Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1999_9_10_4_a3, author = {Malchiodi, Andrea}, title = {Some existence results for the scalar curvature problem via {Morse} theory}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {267--270}, publisher = {mathdoc}, volume = {Ser. 9, 10}, number = {4}, year = {1999}, zbl = {1021.53022}, mrnumber = {1416171}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_4_a3/} }
TY - JOUR AU - Malchiodi, Andrea TI - Some existence results for the scalar curvature problem via Morse theory JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1999 SP - 267 EP - 270 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_4_a3/ LA - en ID - RLIN_1999_9_10_4_a3 ER -
%0 Journal Article %A Malchiodi, Andrea %T Some existence results for the scalar curvature problem via Morse theory %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1999 %P 267-270 %V 10 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_4_a3/ %G en %F RLIN_1999_9_10_4_a3
Malchiodi, Andrea. Some existence results for the scalar curvature problem via Morse theory. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 10 (1999) no. 4, pp. 267-270. http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_4_a3/
[1] Homoclinics: Poincaré-Melnikov type results via a variational approach. Ann. Inst. Henri Poincaré Analyse Non Linéaire, 15, 1998, 233-252; Preliminary note on C. R. Acad. Sci. Paris, 323, Série I, 1996, 753-758. | fulltext EuDML | fulltext mini-dml | DOI | MR | Zbl
- ,[2] Perturbation of \( - \triangle u + u^{\frac{(N+2)}{(N-2)}} = 0 \), the Scalar Curvature Problem in \( R^{N} \) and related topics. J. Funct. Anal., to appear. | DOI | MR | Zbl
- - ,[3] The scalar curvature problem on the standard three dimensional sphere. J. Funct. Anal., 95, 1991, 106-172. | DOI | MR | Zbl
- ,[4] The scalar curvature equation on \( \mathbb{R}^{n} \) and on \( S^{n} \). Adv. Diff. Eq., 1, 1996, 857-880. | MR | Zbl
,[5] Prescribing scalar curvature on \( S^{2} \). Acta Math., 159, 1987, 215-229. | DOI | MR | Zbl
- ,[6] Conformal deformation of metrics on \( S^{2} \). J. Diff. Geom., 27, 1988, 259-296. | fulltext mini-dml | MR | Zbl
- ,[7] A perturbation result in prescribing scalar curvature on \( S^{2} \). Duke Math. J., 64 (1), 1991, 27-69. | fulltext mini-dml | DOI | MR | Zbl
- ,[8] Infinite Dimensional Morse Theory and Multiple Solution Problems. Birkhäuser, 1993. | MR | Zbl
,[9] On Nirenberg’s problem. Int. J. Math., 4, 1993, 35-58. | DOI | MR | Zbl
- ,[10] Scalar curvature on \( S^{2} \). Trans. Amer. Math. Soc., 303, 1987, 365-382. | Zbl
- ,[11] Existence and conformal deformation of metrics with prescribed Gaussian and scalar curvature. Ann. of Math., 101, 1971, 317-331. | MR | Zbl
- ,[12] Prescribing scalar curvature on \( S^{n} \) and related topics, Part 1. J. Diff. Equat., 120, 1995, 319-410. | DOI | MR | Zbl
,[13] Prescribing scalar curvature on \( S^{n} \) and related topics, Part 2, Existence and compactness. Comm. Pure Appl. Math., 49, 1996, 437-477. | DOI | MR | Zbl
,[14] The Scalar Curvature Problem on \( S^{n} \): an approach via Morse Theory. Preprint SISSA. | DOI | MR | Zbl
,[15] Prescribed scalar curvature on the \( n \)-sphere. Calc. Var., 4, 1996, 1-25. | DOI | MR | Zbl
- ,