Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1999_9_10_4_a2, author = {Farina, Alberto}, title = {Simmetria delle soluzioni di equazioni ellittiche semilineari in \( {\mathbb{R}^{N}} \)}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {255--265}, publisher = {mathdoc}, volume = {Ser. 9, 10}, number = {4}, year = {1999}, zbl = {1160.35401}, mrnumber = {1629807}, language = {it}, url = {http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_4_a2/} }
TY - JOUR AU - Farina, Alberto TI - Simmetria delle soluzioni di equazioni ellittiche semilineari in \( \mathbb{R}^{N} \) JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1999 SP - 255 EP - 265 VL - 10 IS - 4 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_4_a2/ LA - it ID - RLIN_1999_9_10_4_a2 ER -
%0 Journal Article %A Farina, Alberto %T Simmetria delle soluzioni di equazioni ellittiche semilineari in \( \mathbb{R}^{N} \) %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1999 %P 255-265 %V 10 %N 4 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_4_a2/ %G it %F RLIN_1999_9_10_4_a2
Farina, Alberto. Simmetria delle soluzioni di equazioni ellittiche semilineari in \( \mathbb{R}^{N} \). Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 10 (1999) no. 4, pp. 255-265. http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_4_a2/
[1] On the Liouville property for divergence form operators. Canadian J. Math., 50, 1998, 487-496. | DOI | MR | Zbl
,[2] The Liouville property and a conjecture of De Giorgi. Preprint. | DOI | MR | Zbl
- - ,[3] Monotonicity for Elliptic Equations in Unbounded Lipschitz Domains. Commun. Pure Appl. Math., 50, 1997, 1089-1111. | DOI | MR | Zbl
- - ,[4] Further Qualitative Properties for Elliptic Equations in Unbounded Domains. Ann. Scuola Norm. Sup. Pisa Cl. Sci., 25 (4), 1997, 69-94. | fulltext EuDML | fulltext mini-dml | MR | Zbl
- - ,[5] One-dimensional symmetry for some bounded entire solutions of some elliptic equations. Preprint, 1999. | fulltext mini-dml | Zbl
- - ,[6] A Gradient Bound for Entire Solutions of Quasi-Linear Equations and its Consequences. Commun. Pure Appl. Math., 47, 1994, 1457-1473. | DOI | MR | Zbl
- - ,[7] Unicité et minimalité des solutions d’une équation the Ginzburg-Landau. Ann. Inst. H. Poincaré, Analyse non linéaire, 12 (3), 1995, 305-318. | fulltext EuDML | fulltext mini-dml | MR | Zbl
,[8] Convergence Problems for Functionals and Operators. In: E. De Giorgi - E. Magenes - U. Mosco (eds.), Proceedings of the Int. Meeting on Recent Methods in Nonlinear Analysis (Rome, 1978). Pitagora, Bologna 1979, 131-188. | MR | Zbl
,[9] Finite-energy solutions, quantization effects and Liouville-type results for a variant of the Ginzburg-Landau systems in \( \mathbb{R}^{K} \). C.R. Acad. Sci. Paris, t. 325, Série I, 1997, 487-491. | DOI | MR | Zbl
,[10] Finite-energy solutions, quantization effects and Liouville-type results for a variant of the Ginzburg-Landau systems in \( \mathbb{R}^{K} \). Differential and Integral Equations, vol. 11, 6, 1998, 875-893. | MR | Zbl
,[11] Some remarks on a conjecture of De Giorgi. Calc. Var. Part. Diff. Eq., 8, 1999, 3, 233-245. | DOI | MR | Zbl
,[12] Symmetry for solutions of semilinear elliptic equations in \( \mathbb{R}^{N} \) and related conjectures. Ricerche di Matematica: special issue in memory of E. De Giorgi, XLVIII, 1999, 129-154. | MR | Zbl
,[13] On a conjecture of De Giorgi and some related problems. Math. Annalen, 311, 1998, 481-491. | DOI | MR | Zbl
- ,[14] Étude de l’équation de la diffusion avec croissance de la quantité de matière et son application à un problème biologique. Bull. Univ. Etat Moscou, Série Int. Sect. A, Math. et Mecan., 1, 1937, 1-25. (English translation: Study of the Diffusion Equation with Growth of the Quantity of Matter and its Application to a Biology Problem. In: R. Pelcé (ed.), Dynamics of curved fronts. Perspectives in Physics Series, Academic Press, New York 1988, 105-130). | Zbl
- - ,[15] Radial Symmetry of Positive Solutions of Nonlinear Elliptic Equations in \( \mathbb{R}^{N} \). Comm. Part. Diff. Eq., 18, 1993, 1043-1054. | DOI | MR | Zbl
- ,[16] A Gradient Bound and a Liouville Theorem for Nonlinear Poisson Equations. Commun. Pure Appl. Math., 38, 1985, 679-684. | DOI | MR | Zbl
,[17] Some Entire Solutions in the Plane of Nonlinear Poisson Equations. Boll. Un. Mat. Ital., 17-B, 1980, 614-622. | MR | Zbl
- ,