On optimal \( L^{p} \) regularity in evolution equations
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 10 (1999) no. 1, pp. 25-34.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Using interpolation techniques we prove an optimal regularity theorem for the convolution \( u(t) = \int_{0}^{t} T(t-s) f(s) ds \), where \( T(t) \) is a strongly continuous semigroup in general Banach space. In the case of abstract parabolic problems – that is, when \( T(t) \) is an analytic semigroup – it lets us recover in a unified way previous regularity results. It may be applied also to some non analytic semigroups, such as the realization of the Ornstein-Uhlenbeck semigroup in \( L^{p} (\mathbb{R}^{n}) \), \( 1 p \infty \), in which case it yields new optimal regularity results in fractional Sobolev spaces.
Usando tecniche di interpolazione si dimostra un teorema di regolarità ottimale per la convoluzione \( u(t) = \int_{0}^{t} T(t-s) f(s) ds \), dove \( T(t) \) è un semigruppo fortemente continuo in uno spazio di Banach qualunque. Nel caso dei problemi parabolici astratti – cioè quando \( T(t) \) è un semigruppo analitico – esso permette di ritrovare in modo unificato risultati di regolarità già noti. Il teorema può essere applicato anche nel caso di alcuni semigruppi non analitici, come ad esempio la realizzazione del semigruppo di Ornstein-Uhlenbeck in \( L^{p} (\mathbb{R}^{n}) \), \( 1 p \infty \), per il quale dà nuovi risultati di regolarità ottimale in spazi di Sobolev frazionari.
@article{RLIN_1999_9_10_1_a3,
     author = {Lunardi, Alessandra},
     title = {On optimal \( {L^{p}} \) regularity in evolution equations},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {25--34},
     publisher = {mathdoc},
     volume = {Ser. 9, 10},
     number = {1},
     year = {1999},
     zbl = {1023.47023},
     mrnumber = {147774},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a3/}
}
TY  - JOUR
AU  - Lunardi, Alessandra
TI  - On optimal \( L^{p} \) regularity in evolution equations
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1999
SP  - 25
EP  - 34
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a3/
LA  - en
ID  - RLIN_1999_9_10_1_a3
ER  - 
%0 Journal Article
%A Lunardi, Alessandra
%T On optimal \( L^{p} \) regularity in evolution equations
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1999
%P 25-34
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a3/
%G en
%F RLIN_1999_9_10_1_a3
Lunardi, Alessandra. On optimal \( L^{p} \) regularity in evolution equations. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 10 (1999) no. 1, pp. 25-34. http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a3/

[1] S. Agmon, On the eigenfunctions and the eigenvalues of general elliptic boundary value problems. Comm. Pure Appl. Math., 15, 1962, 119-147. | MR | Zbl

[2] S. Cerrai, Elliptic and parabolic equations in \( \mathbb{R}^{n} \) with coefficients having polynomial growth. Comm. Part. Diff. Eqns., 21, 1996, 281-317. | DOI | MR | Zbl

[3] S. Cerrai, Some results for second order elliptic operators having unbounded coefficients. Diff. Int. Eqns., to appear. | MR | Zbl

[4] G. Da Prato, Some results on elliptic and parabolic equations in Hilbert spaces. Rend. Mat. Acc. Lincei, s.9, v.7, 1996, 181-199. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[5] G. Da Prato - P. Grisvard, Sommes d’opérateurs linéaires et équations différentielles opérationelles. J. Maths. Pures Appliquées, 54, 1975, 305-387. | MR | Zbl

[6] G. Da Prato - A. Lunardi, On the Ornstein-Uhlenbeck operator in spaces of continuous functions. J. Funct. Anal., 131, 1995, 94-114. | DOI | MR | Zbl

[7] G. Di Blasio, Linear parabolic evolution equations in \( L^{p} \) spaces. Ann. Mat. Pura Appl., 138, 1984, 55-104. | DOI | MR | Zbl

[8] G. Di Blasio, Holomorphic semigroups in interpolation and extrapolation spaces. Semigroup Forum, 47, 1993, 105-114. | fulltext EuDML | DOI | MR | Zbl

[9] G. Di Blasio, Limiting case for interpolation spaces generated by holomorphic semigroups. Semigroup Forum, to appear. | DOI | MR | Zbl

[10] G. Dore - A. Venni, On the closedness of the sum of two closed operators. Math. Z., 196, 1987, 189-201. | fulltext EuDML | DOI | MR | Zbl

[11] P. Grisvard, Equations différentielles abstraites. Ann. Scient. Ec. Norm. Sup., 2, 1969, 311-395. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[12] D. Guidetti, On elliptic systems in \( L^{1} \). Osaka J. Math., 30, 1993, 397-429. | fulltext mini-dml | MR | Zbl

[13] D. Guidetti, On interpolation with boundary conditions. Math. Z., 207, 1991, 439-460. | fulltext EuDML | DOI | MR | Zbl

[14] G. H. Hardy - J. E. Littlewood - G. Pòlya, Inequalities. Cambridge Univ. Press, Cambridge 1934. | Zbl

[15] C. Le Merdy, Counterexamples on \( L_{p} \)-maximal regularity. Preprint Éq. Math. Besançon 1997.

[16] A. Lunardi, Analytic semigroups and optimal regularity in parabolic problems. Birkhäuser Verlag, Basel 1995. | MR | Zbl

[17] A. Lunardi, An interpolation method to characterize domains of generators of semigroups. Semigroup Forum, 53, 1996, 321-329. | fulltext EuDML | DOI | MR | Zbl

[18] A. Lunardi, On the Ornstein-Uhlenbeck operator in \( L^{2} \) spaces with respect to invariant measures. Trans. Amer. Math. Soc., 349, 1997, 155-169. | DOI | MR | Zbl

[19] A. Lunardi, Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in \( \mathbb{R}^{n} \). Studia Math., 128, 1988, 171-198. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[20] A. Lunardi, Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in \( \mathbb{R}^{n} \). Ann. Sc. Norm. Sup. Pisa, s. IV, 24, 1997, 133-164. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[21] A. Lunardi - V. Vespri, Optimal \( L^{\infty} \) and Schauder estimates for elliptic and parabolic operators with unbounded coefficients. In: G. Caristi - E. Mitidieri (eds.), Proceedings of the Conference on Reaction-Diffusion Systems. Lect. Notes in Pure and Applied Math., 194, M. Dekker, New York 1998, 217-239. | MR | Zbl

[22] A. Lunardi - V. Vespri, Generation of strongly continuous semigroups by elliptic operators with unbounded coefficients in \( L^{p} (\mathbb{R}^{n}) \). Rend. Istit. Mat. Univ. Trieste, (Special issue dedicated to the memory of Pierre Grisvard), 28, 1997, 251-279. | MR | Zbl

[23] H. Triebel, Interpolation theory, function spaces, differential operators. North-Holland, Amsterdam 1978. | MR | Zbl