Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1999_9_10_1_a3, author = {Lunardi, Alessandra}, title = {On optimal \( {L^{p}} \) regularity in evolution equations}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {25--34}, publisher = {mathdoc}, volume = {Ser. 9, 10}, number = {1}, year = {1999}, zbl = {1023.47023}, mrnumber = {147774}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a3/} }
TY - JOUR AU - Lunardi, Alessandra TI - On optimal \( L^{p} \) regularity in evolution equations JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1999 SP - 25 EP - 34 VL - 10 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a3/ LA - en ID - RLIN_1999_9_10_1_a3 ER -
%0 Journal Article %A Lunardi, Alessandra %T On optimal \( L^{p} \) regularity in evolution equations %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1999 %P 25-34 %V 10 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a3/ %G en %F RLIN_1999_9_10_1_a3
Lunardi, Alessandra. On optimal \( L^{p} \) regularity in evolution equations. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 10 (1999) no. 1, pp. 25-34. http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a3/
[1] On the eigenfunctions and the eigenvalues of general elliptic boundary value problems. Comm. Pure Appl. Math., 15, 1962, 119-147. | MR | Zbl
,[2] Elliptic and parabolic equations in \( \mathbb{R}^{n} \) with coefficients having polynomial growth. Comm. Part. Diff. Eqns., 21, 1996, 281-317. | DOI | MR | Zbl
,[3] Some results for second order elliptic operators having unbounded coefficients. Diff. Int. Eqns., to appear. | MR | Zbl
,[4] Some results on elliptic and parabolic equations in Hilbert spaces. Rend. Mat. Acc. Lincei, s.9, v.7, 1996, 181-199. | fulltext EuDML | fulltext mini-dml | MR | Zbl
,[5] Sommes d’opérateurs linéaires et équations différentielles opérationelles. J. Maths. Pures Appliquées, 54, 1975, 305-387. | MR | Zbl
- ,[6] On the Ornstein-Uhlenbeck operator in spaces of continuous functions. J. Funct. Anal., 131, 1995, 94-114. | DOI | MR | Zbl
- ,[7] Linear parabolic evolution equations in \( L^{p} \) spaces. Ann. Mat. Pura Appl., 138, 1984, 55-104. | DOI | MR | Zbl
,[8] Holomorphic semigroups in interpolation and extrapolation spaces. Semigroup Forum, 47, 1993, 105-114. | fulltext EuDML | DOI | MR | Zbl
,[9] Limiting case for interpolation spaces generated by holomorphic semigroups. Semigroup Forum, to appear. | DOI | MR | Zbl
,[10] On the closedness of the sum of two closed operators. Math. Z., 196, 1987, 189-201. | fulltext EuDML | DOI | MR | Zbl
- ,[11] Equations différentielles abstraites. Ann. Scient. Ec. Norm. Sup., 2, 1969, 311-395. | fulltext EuDML | fulltext mini-dml | MR | Zbl
,[12] On elliptic systems in \( L^{1} \). Osaka J. Math., 30, 1993, 397-429. | fulltext mini-dml | MR | Zbl
,[13] On interpolation with boundary conditions. Math. Z., 207, 1991, 439-460. | fulltext EuDML | DOI | MR | Zbl
,[14] Inequalities. Cambridge Univ. Press, Cambridge 1934. | Zbl
- - ,[15] Counterexamples on \( L_{p} \)-maximal regularity. Preprint Éq. Math. Besançon 1997.
,[16] Analytic semigroups and optimal regularity in parabolic problems. Birkhäuser Verlag, Basel 1995. | MR | Zbl
,[17] An interpolation method to characterize domains of generators of semigroups. Semigroup Forum, 53, 1996, 321-329. | fulltext EuDML | DOI | MR | Zbl
,[18] On the Ornstein-Uhlenbeck operator in \( L^{2} \) spaces with respect to invariant measures. Trans. Amer. Math. Soc., 349, 1997, 155-169. | DOI | MR | Zbl
,[19] Schauder theorems for linear elliptic and parabolic problems with unbounded coefficients in \( \mathbb{R}^{n} \). Studia Math., 128, 1988, 171-198. | fulltext EuDML | fulltext mini-dml | MR | Zbl
,[20] Schauder estimates for a class of degenerate elliptic and parabolic operators with unbounded coefficients in \( \mathbb{R}^{n} \). Ann. Sc. Norm. Sup. Pisa, s. IV, 24, 1997, 133-164. | fulltext EuDML | fulltext mini-dml | MR | Zbl
,[21] Optimal \( L^{\infty} \) and Schauder estimates for elliptic and parabolic operators with unbounded coefficients. In: G. Caristi - E. Mitidieri (eds.), Proceedings of the Conference on Reaction-Diffusion Systems. Lect. Notes in Pure and Applied Math., 194, M. Dekker, New York 1998, 217-239. | MR | Zbl
- ,[22] Generation of strongly continuous semigroups by elliptic operators with unbounded coefficients in \( L^{p} (\mathbb{R}^{n}) \). Rend. Istit. Mat. Univ. Trieste, (Special issue dedicated to the memory of Pierre Grisvard), 28, 1997, 251-279. | MR | Zbl
- ,[23] Interpolation theory, function spaces, differential operators. North-Holland, Amsterdam 1978. | MR | Zbl
,