On optimal \( L^{p} \) regularity in evolution equations
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 10 (1999) no. 1, pp. 25-34

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Using interpolation techniques we prove an optimal regularity theorem for the convolution \( u(t) = \int_{0}^{t} T(t-s) f(s) ds \), where \( T(t) \) is a strongly continuous semigroup in general Banach space. In the case of abstract parabolic problems – that is, when \( T(t) \) is an analytic semigroup – it lets us recover in a unified way previous regularity results. It may be applied also to some non analytic semigroups, such as the realization of the Ornstein-Uhlenbeck semigroup in \( L^{p} (\mathbb{R}^{n}) \), \( 1 p \infty \), in which case it yields new optimal regularity results in fractional Sobolev spaces.
@article{RLIN_1999_9_10_1_a3,
     author = {Lunardi, Alessandra},
     title = {On optimal \( {L^{p}} \) regularity in evolution equations},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {25--34},
     publisher = {mathdoc},
     volume = {Ser. 9, 10},
     number = {1},
     year = {1999},
     zbl = {1023.47023},
     mrnumber = {MR1768518},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a3/}
}
TY  - JOUR
AU  - Lunardi, Alessandra
TI  - On optimal \( L^{p} \) regularity in evolution equations
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1999
SP  - 25
EP  - 34
VL  - 10
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a3/
LA  - en
ID  - RLIN_1999_9_10_1_a3
ER  - 
%0 Journal Article
%A Lunardi, Alessandra
%T On optimal \( L^{p} \) regularity in evolution equations
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1999
%P 25-34
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a3/
%G en
%F RLIN_1999_9_10_1_a3
Lunardi, Alessandra. On optimal \( L^{p} \) regularity in evolution equations. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 10 (1999) no. 1, pp. 25-34. http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a3/