On optimal \( L^{p} \) regularity in evolution equations
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 10 (1999) no. 1, pp. 25-34
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Using interpolation techniques we prove an optimal regularity theorem for the convolution \( u(t) = \int_{0}^{t} T(t-s) f(s) ds \), where \( T(t) \) is a strongly continuous semigroup in general Banach space. In the case of abstract parabolic problems – that is, when \( T(t) \) is an analytic semigroup – it lets us recover in a unified way previous regularity results. It may be applied also to some non analytic semigroups, such as the realization of the Ornstein-Uhlenbeck semigroup in \( L^{p} (\mathbb{R}^{n}) \), \( 1 p \infty \), in which case it yields new optimal regularity results in fractional Sobolev spaces.
@article{RLIN_1999_9_10_1_a3,
author = {Lunardi, Alessandra},
title = {On optimal \( {L^{p}} \) regularity in evolution equations},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {25--34},
publisher = {mathdoc},
volume = {Ser. 9, 10},
number = {1},
year = {1999},
zbl = {1023.47023},
mrnumber = {MR1768518},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a3/}
}
TY - JOUR
AU - Lunardi, Alessandra
TI - On optimal \( L^{p} \) regularity in evolution equations
JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY - 1999
SP - 25
EP - 34
VL - 10
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a3/
LA - en
ID - RLIN_1999_9_10_1_a3
ER -
%0 Journal Article
%A Lunardi, Alessandra
%T On optimal \( L^{p} \) regularity in evolution equations
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1999
%P 25-34
%V 10
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a3/
%G en
%F RLIN_1999_9_10_1_a3
Lunardi, Alessandra. On optimal \( L^{p} \) regularity in evolution equations. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 10 (1999) no. 1, pp. 25-34. http://geodesic.mathdoc.fr/item/RLIN_1999_9_10_1_a3/