On a problem in effective knot theory
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 9 (1998) no. 4, pp. 299-306
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
The following problem is investigated: «Find an elementary function \( F (n) : \mathbf{ Z }\rightarrow \mathbf{ Z} \) such that if \( \Gamma \) is a knot diagram with \( n \) crossings and the corresponding knot is trivial, then there is a sequence of Reidemeister moves that proves triviality such that at each step we have less than \( F (n) \) crossings». The problem is shown to be equivalent to a problem posed by D. Welsh in [7] and solved by geometrical techniques (normal surfaces).
@article{RLIN_1998_9_9_4_a5,
author = {Galatolo, Stefano},
title = {On a problem in effective knot theory},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {299--306},
year = {1998},
volume = {Ser. 9, 9},
number = {4},
zbl = {1001.57007},
mrnumber = {MR1722788},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_4_a5/}
}
TY - JOUR AU - Galatolo, Stefano TI - On a problem in effective knot theory JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1998 SP - 299 EP - 306 VL - 9 IS - 4 UR - http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_4_a5/ LA - en ID - RLIN_1998_9_9_4_a5 ER -
Galatolo, Stefano. On a problem in effective knot theory. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 9 (1998) no. 4, pp. 299-306. http://geodesic.mathdoc.fr/item/RLIN_1998_9_9_4_a5/