Semigroups and generators on convex domains with the hyperbolic metric
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 8 (1997) no. 4, pp. 231-250.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let \( D \) be domain in a complex Banach space \( X \), and let \( \rho \) be a pseudometric assigned to \( D \) by a Schwarz-Pick system. In the first section of the paper we establish several criteria for a mapping \( f : D \rightarrow X \) to be a generator of a \( \rho \)-nonexpansive semigroup on \( D \) in terms of its nonlinear resolvent. In the second section we let \( X = H \) be a complex Hilbert space, \( D = B \) the open unit ball of \( H \), and \( \rho \) the hyperbolic metric on \( B \). We introduce the notion of a \( \rho \)-monotone mapping and obtain simple characterizations of generators of semigroups of holomorphic self-mappings of \( B \).
Sia \( D \) un dominio in uno spazio di Banach complesso \( X \) e sia \( \rho \) una pseudometrica assegnata a \( D \) da un sistema di Schwarz-Pick. Nella prima parte del lavoro si stabiliscono alcuni criteri affinché una applicazione \( f : D \rightarrow X \) sia un generatore di un semigruppo \( \rho \)-non espansivo su \( D \). Nella seconda parte si suppone che sia \( X = H \), spazio di Hilbert complesso, che \( D = B \) disco unitario aperto di \( H \) e che sia \( \rho \) la metrica iperbolica su \( B \). Si introduce la nozione di applicazione \( \rho \)-monotona e si ottengono semplici caratterizzazioni di generatori di semigruppi di applicazioni olomorfe di \( B \) in sé.
@article{RLIN_1997_9_8_4_a0,
     author = {Reich, Simeon and Shoikhet, David},
     title = {Semigroups and generators on convex domains with the hyperbolic metric},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {231--250},
     publisher = {mathdoc},
     volume = {Ser. 9, 8},
     number = {4},
     year = {1997},
     zbl = {0905.47056},
     mrnumber = {939538},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_4_a0/}
}
TY  - JOUR
AU  - Reich, Simeon
AU  - Shoikhet, David
TI  - Semigroups and generators on convex domains with the hyperbolic metric
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1997
SP  - 231
EP  - 250
VL  - 8
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_4_a0/
LA  - en
ID  - RLIN_1997_9_8_4_a0
ER  - 
%0 Journal Article
%A Reich, Simeon
%A Shoikhet, David
%T Semigroups and generators on convex domains with the hyperbolic metric
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1997
%P 231-250
%V 8
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_4_a0/
%G en
%F RLIN_1997_9_8_4_a0
Reich, Simeon; Shoikhet, David. Semigroups and generators on convex domains with the hyperbolic metric. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 8 (1997) no. 4, pp. 231-250. http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_4_a0/

[1] M. Abate, Horospheres and iterates of holomorphic maps. Math. Z., 198, 1988, 225-238. | fulltext EuDML | DOI | MR | Zbl

[2] M. Abate, The infinitesimal generators of semigroups of holomorphic maps. Ann. Mat. Pura Appl., 161, 1992, 167-180. | DOI | MR | Zbl

[3] M. Abate - J. P. Vigué, Common fixed points in hyperbolic Riemann surfaces and convex domains. Proc. Amer. Math. Soc., 112, 1991, 503-512. | DOI | MR | Zbl

[4] L. Aizenberg - S. Reich - D. Shoikhet, One-sided estimates for the existence of null points of holomorphic mappings in Banach spaces. J. Math. Anal. Appl., 203, 1996, 38-54. | DOI | MR | Zbl

[5] J. Arazy, An application of infinite dimensional holomorphy to the geometry of Banach spaces. Lecture Notes in Math., vol. 1267, Springer, Berlin 1987, 122-150. | DOI | MR | Zbl

[6] V. Barbu, Nonlinear Semigroups and Differential Equations in Banach Spaces. Noordhoff, Leyden 1976. | MR | Zbl

[7] E. Berkson - H. Porta, Semigroups of analytic functions and composition operators. Michigan Math. J., 25, 1978, 101-115. | fulltext mini-dml | MR | Zbl

[8] H. Brézis, Opérateurs Maximaux Monotones. North Holland, Amsterdam 1973.

[9] H. Cartan, Sur les rétractions d'une variété. C. R. Acad. Sci. Paris, 303, 1986, 715-716. | MR | Zbl

[10] P. Chernoff - J. E. Marsden, On continuity and smoothness of group actions. Bull. Amer. Math. Soc., 76, 1970, 1044-1049. | fulltext mini-dml | MR | Zbl

[11] M. G. Crandall - T. M. Liggett, Generation of semigroups of nonlinear transformations on general Banach spaces. Amer. J. Math., 93, 1971, 265-298. | MR | Zbl

[12] S. Dineen, The Schwarz Lemma. Clarendon Press, Oxford 1989. | MR | Zbl

[13] S. Dineen - P. M. Timoney - J. P. Vigué, Pseudodistances invariantes sur les domaines d'un espace localement convexe. Ann. Scuola Norm. Sup. Pisa, 12, 1985, 515-529. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[14] C. J. Earle - R. S. Hamilton, A fixed point theorem for holomorphic mappings. Proc. Symp. Pure Math., vol. 16, Amer. Math. Soc., Providence, RI, 1970, 61-65. | MR | Zbl

[15] T. Franzoni - E. Vesentini, Holomorphic Maps and Invariant Distances. North Holland, Amsterdam 1980. | MR | Zbl

[16] I. I. Gikhman - A. V. Skorokhod, Theory of Random Processes. Nauka, Moscow 1973. | MR | Zbl

[17] K. Goebel - S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings. Dekker, New York-Basel 1984. | MR | Zbl

[18] L. A. Harris, Schwarz-Pick systems of pseudometrics for domains in normed linear spaces. Advances in Holomorphy, North Holland, Amsterdam 1979, 345-406. | MR | Zbl

[19] T. E. Harris, The Theory of Branching Processes. Springer, Berlin 1963. | MR | Zbl

[20] U. Helmke - B. Moore, Optimization and Dynamical Systems. Springer, London 1994. | DOI | MR | Zbl

[21] M. E. Jacobson, Computation of extinction probabilities for the Bellman-Harris branching process. Math. Biosciences, 77, 1985, 173-177. | DOI | MR | Zbl

[22] V. Khatskevich - S. Reich - D. Shoikhet, Ergodic type theorems for nonlinear semigroups with holomorphic generators. Recent Developments in Evolution Equations, Pitman Research Notes in Math., vol. 324, 1995, 191-200. | MR | Zbl

[23] V. Khatskevich - S. Reich - D. Shoikhet, Global implicit function and fixed point theorems for holomorphic mappings and semigroups. Complex Variables, 28, 1996, 347-356. | MR | Zbl

[24] M. A. Krasnoselski - P. P. Zabreiko, Geometrical Methods of Nonlinear Analysis. Springer, Berlin 1984. | DOI | MR

[25] T. Kuczumow - A. Stachura, Iterates of holomorphic and \( k_{D} \)-nonexpansive mappings in convex domains in \( \mathbf{C}^{n} \). Advances Math., 81, 1990, 90-98. | DOI | MR | Zbl

[26] P. Mazet - J. P. Vigué, Points fixes d'une application holomorphe d'un domaine borné dans lui-même. Acta Math., 166, 1991, 1-26. | DOI | MR | Zbl

[27] W. Rudin, The fixed point sets of some holomorphic maps. Bull. Malaysian Math. Soc., 1, 1978, 25-28. | MR | Zbl

[28] B. A. Sevastyanov, Branching Processes. Nauka, Moscow 1971. | MR

[29] I. Shafrir, Coaccretive operators and firmly nonexpansive mappings in the Hilbert ball. Nonlinear Analysis, 18, 1992, 637-648. | DOI | MR | Zbl

[30] H. Upmeier, Jordan Algebras in Analysis, Operator Theory and Quantum Mechanics. CBMS - NSF Regional Conference Series in Math., AMS, Providence 1987. | MR | Zbl

[31] E. Vesentini, Semigroups of holomorphic isometries. Advances Math., 65, 1987, 272-306. | DOI | MR | Zbl

[32] E. Vesentini, Krein spaces and holomorphic isometries of Cartan domains. In: S. COEN (ed.), Geometry and Complex Variables. Dekker, New York 1991, 409-413. | MR | Zbl

[33] E. Vesentini, Semigroups of holomorphic isometries. In: S. COEN (ed.), Complex Potential Theory. Kluwer, Dordrecht 1994, 475-548. | MR | Zbl

[34] K. Yosida, Functional Analysis. Springer, Berlin 1968.