Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1997_9_8_3_a1, author = {Da Prato, Giuseppe and Zabczyk, Jerzy}, title = {Differentiability of the {Feynman-Kac} semigroup and a control application}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {183--188}, publisher = {mathdoc}, volume = {Ser. 9, 8}, number = {3}, year = {1997}, zbl = {0910.93025}, mrnumber = {1047576}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_3_a1/} }
TY - JOUR AU - Da Prato, Giuseppe AU - Zabczyk, Jerzy TI - Differentiability of the Feynman-Kac semigroup and a control application JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1997 SP - 183 EP - 188 VL - 8 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_3_a1/ LA - en ID - RLIN_1997_9_8_3_a1 ER -
%0 Journal Article %A Da Prato, Giuseppe %A Zabczyk, Jerzy %T Differentiability of the Feynman-Kac semigroup and a control application %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1997 %P 183-188 %V 8 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_3_a1/ %G en %F RLIN_1997_9_8_3_a1
Da Prato, Giuseppe; Zabczyk, Jerzy. Differentiability of the Feynman-Kac semigroup and a control application. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 8 (1997) no. 3, pp. 183-188. http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_3_a1/
[1] Some results on nonlinear optimal control problems and Hamilton-Jacobi equations infinite dimensions. J. Funct. Anal., 90, 1990, 27-47. | DOI | MR | Zbl
- ,[2] Direct solution of a second order Hamilton-Jacobi equation in Hilbert spaces. In: G. DA PRATO - L. TUBARO (eds.), Stochastic partial differential equations and applications. Pitman Research Notes in Mathematics Series n. 268, 1992, 72-85. | MR | Zbl
- ,[3] Control of the stochastic Burgers model of turbulence. Scuola Normale Superiore preprint n. 4, Pisa 1996. | DOI | MR | Zbl
- ,[4] Ergodicity for infinite dimensions. Enciclopedia of Mathematics and its Applications, Cambridge University Press, 1996. | DOI | MR | Zbl
- ,[5] Stochastic flows on Riemannian manifolds. In: M. A. PINSKY - V. VIHSTUTZ (eds.), Diffusion Processes and Related Problems in Analysis. Birkhäuser, 1992, vol. II, 33-72. | MR | Zbl
,[6] Regularity of solutions of a second order Hamilton-Jacobi equation and application to a control problem. Commun, in partial differential equations, 20 (5&6), 1995, 775-826. | DOI | MR | Zbl
,[7] Global regular solutions of second order Hamilton-Jacobi equations in Hilbert spaces with locally Lipschitz nonlinearities. Journal of Mathematical Analysis and Applications, 198, 1996, 399-443. | DOI | MR | Zbl
,[8] Regular solutions of second order stationary Hamilton-Jacobi equations. J. Differential Equations, to appear. | DOI | MR | Zbl
- ,[9] Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part I: The case of bounded stochastic evolution. Acta Math., 161, 1988, 243-278. | DOI | MR | Zbl
,[10] Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part II: Optimal control fo Zakai's equation. In: G. DA PRATO - L. TUBARO (eds.), Stochastic Partial Differential Equations and Applications. Lecture Notes in Mathematics No. 1390, Springer-Verlag, 1989, 147-170. | DOI | MR | Zbl
,[11] Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part III: Uniqueness of viscosity solutions for general second order equations. J. Funct. Anal., 86, 1989, 1-18. | DOI | MR | Zbl
,[12] Strong Feller property and irreducibility for diffusions on Hilbert spaces. Annals of Probability, 1996. | fulltext mini-dml | MR | Zbl
- ,[13] Viscosity solutions of fully nonlinear partial differential equations with «unbounded» terms in infinite dimensions. Ph. D. Thesis, University of California at Santa Barbara, 1993. | MR
,