Differentiability of the Feynman-Kac semigroup and a control application
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 8 (1997) no. 3, pp. 183-188.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The Hamilton-Jacobi-Bellman equation corresponding to a large class of distributed control problems is reduced to a linear parabolic equation having a regular solution. A formula for the first derivative is obtained.
L'equazione di Hamilton-Jacobi-Bellman corrispondente a un'ampia classe di problemi di controllo distribuiti viene ridotta a una equazione parabolica lineare avente una soluzione regolare. Viene inoltre ottenuta una formula per la derivata prima della soluzione.
@article{RLIN_1997_9_8_3_a1,
     author = {Da Prato, Giuseppe and Zabczyk, Jerzy},
     title = {Differentiability of the {Feynman-Kac} semigroup and a control application},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {183--188},
     publisher = {mathdoc},
     volume = {Ser. 9, 8},
     number = {3},
     year = {1997},
     zbl = {0910.93025},
     mrnumber = {1047576},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_3_a1/}
}
TY  - JOUR
AU  - Da Prato, Giuseppe
AU  - Zabczyk, Jerzy
TI  - Differentiability of the Feynman-Kac semigroup and a control application
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1997
SP  - 183
EP  - 188
VL  - 8
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_3_a1/
LA  - en
ID  - RLIN_1997_9_8_3_a1
ER  - 
%0 Journal Article
%A Da Prato, Giuseppe
%A Zabczyk, Jerzy
%T Differentiability of the Feynman-Kac semigroup and a control application
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1997
%P 183-188
%V 8
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_3_a1/
%G en
%F RLIN_1997_9_8_3_a1
Da Prato, Giuseppe; Zabczyk, Jerzy. Differentiability of the Feynman-Kac semigroup and a control application. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 8 (1997) no. 3, pp. 183-188. http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_3_a1/

[1] P. Cannarsa - G. Da Prato, Some results on nonlinear optimal control problems and Hamilton-Jacobi equations infinite dimensions. J. Funct. Anal., 90, 1990, 27-47. | DOI | MR | Zbl

[2] P. Cannarsa - G. Da Prato, Direct solution of a second order Hamilton-Jacobi equation in Hilbert spaces. In: G. DA PRATO - L. TUBARO (eds.), Stochastic partial differential equations and applications. Pitman Research Notes in Mathematics Series n. 268, 1992, 72-85. | MR | Zbl

[3] G. Da Prato - A. Debussche, Control of the stochastic Burgers model of turbulence. Scuola Normale Superiore preprint n. 4, Pisa 1996. | DOI | MR | Zbl

[4] G. Da Prato - J. Zabczyk, Ergodicity for infinite dimensions. Enciclopedia of Mathematics and its Applications, Cambridge University Press, 1996. | DOI | MR | Zbl

[5] K. D. Elworthy, Stochastic flows on Riemannian manifolds. In: M. A. PINSKY - V. VIHSTUTZ (eds.), Diffusion Processes and Related Problems in Analysis. Birkhäuser, 1992, vol. II, 33-72. | MR | Zbl

[6] F. Gozzi, Regularity of solutions of a second order Hamilton-Jacobi equation and application to a control problem. Commun, in partial differential equations, 20 (5&6), 1995, 775-826. | DOI | MR | Zbl

[7] F. Gozzi, Global regular solutions of second order Hamilton-Jacobi equations in Hilbert spaces with locally Lipschitz nonlinearities. Journal of Mathematical Analysis and Applications, 198, 1996, 399-443. | DOI | MR | Zbl

[8] F. Gozzi - E. Rouy, Regular solutions of second order stationary Hamilton-Jacobi equations. J. Differential Equations, to appear. | DOI | MR | Zbl

[9] P. L. Lions, Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part I: The case of bounded stochastic evolution. Acta Math., 161, 1988, 243-278. | DOI | MR | Zbl

[10] P. L. Lions, Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part II: Optimal control fo Zakai's equation. In: G. DA PRATO - L. TUBARO (eds.), Stochastic Partial Differential Equations and Applications. Lecture Notes in Mathematics No. 1390, Springer-Verlag, 1989, 147-170. | DOI | MR | Zbl

[11] P. L. Lions, Viscosity solutions of fully nonlinear second-order equations and optimal stochastic control in infinite dimensions. Part III: Uniqueness of viscosity solutions for general second order equations. J. Funct. Anal., 86, 1989, 1-18. | DOI | MR | Zbl

[12] S. Peszat - J. Zabczyk, Strong Feller property and irreducibility for diffusions on Hilbert spaces. Annals of Probability, 1996. | fulltext mini-dml | MR | Zbl

[13] A. Swiech, Viscosity solutions of fully nonlinear partial differential equations with «unbounded» terms in infinite dimensions. Ph. D. Thesis, University of California at Santa Barbara, 1993. | MR