Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1997_9_8_2_a4, author = {Bellettini, Giovanni and Novaga, Matteo}, title = {Barriers for a class of geometric evolution problems}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {119--128}, publisher = {mathdoc}, volume = {Ser. 9, 8}, number = {2}, year = {1997}, zbl = {0990.35070}, mrnumber = {1205983}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_2_a4/} }
TY - JOUR AU - Bellettini, Giovanni AU - Novaga, Matteo TI - Barriers for a class of geometric evolution problems JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1997 SP - 119 EP - 128 VL - 8 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_2_a4/ LA - en ID - RLIN_1997_9_8_2_a4 ER -
%0 Journal Article %A Bellettini, Giovanni %A Novaga, Matteo %T Barriers for a class of geometric evolution problems %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1997 %P 119-128 %V 8 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_2_a4/ %G en %F RLIN_1997_9_8_2_a4
Bellettini, Giovanni; Novaga, Matteo. Barriers for a class of geometric evolution problems. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 8 (1997) no. 2, pp. 119-128. http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_2_a4/
[1] Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31, 1993, 387-437. | DOI | MR | Zbl
- - ,[2] Minimal barriers for geometric evolutions. Preprint Univ. Pisa, gennaio 1997; J. Diff. Eq., to appear. | DOI | MR | Zbl
- ,[3] Comparison results between minimal barriers and viscosity solutions for geometric evolutions. Preprint Univ. Pisa n. 2.252.998, ottobre 1996. | fulltext mini-dml | MR | Zbl
- ,[4] Some results on minimal barriers in the sense of De Giorgi applied to driven motion by mean curvature. Rend. Acc. Naz. Sci., XL Mem. Mat. (5), 19, 1995, 43-67. | MR | Zbl
- ,[5] Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation. J. Differential Geom., 33, 1991, 749-786. | fulltext mini-dml | MR | Zbl
- - ,[6] Users guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27, 1992, 1-67. | fulltext mini-dml | DOI | MR | Zbl
- - ,[7] New problems on minimizing movements. In: J.-L. LIONS - C. BAIOCCHI (eds.), Boundary Value Problems for Partial Differential Equations and Applications. Vol. 29, Masson, Paris 1993. | MR | Zbl
,[8] Barriers, boundaries, motion of manifolds. Conference held at Dipartimento di Matematica of Pavia, March 18, 1994.
,[9] Congetture riguardanti alcuni problemi di evoluzione. Duke Math. J., 81, 1996, 255-268. | fulltext mini-dml | DOI | MR | Zbl
,[10] Motion of level sets by mean curvature. I. J. Differential Geom., 33, 1991, 635-681. | fulltext mini-dml | MR | Zbl
- ,[11] Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains. Indiana Univ. Math. J., 40, 1991, 443-470. | DOI | MR | Zbl
- - - ,[12] Generalized motions of hypersurfaces whose growth speed depends superlinearly on the curvature tensor. Differential Integral Equations, 7, 1994, 323-343. | MR | Zbl
,[13] The level-set flow on a manifold. In: R. GREENE - S. T. YAU (eds.), Proc. of the 1990 Summer Inst. in Diff. Geom. Amer. Math. Soc., 1992. | MR | Zbl
,[14] Elliptic Regularization and Partial Regularity for Motion by Mean Curvature. Memoirs of the Amer. Math. Soc., 250, 1994, 1-90. | MR | Zbl
,[15] Generalized motion of noncompact hypersurfaces with velocity having arbitrary growth on the curvature tensor. Tohoku Math. J., 47, 1995, 227-250. | fulltext mini-dml | DOI | MR | Zbl
- ,[16] Motion of a set by the curvature of its boudnary. J. Differential Equations, 101, 1993, 313-372. | DOI | MR | Zbl
,