A special version of the Schwarz lemma on an infinite dimensional domain
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 8 (1997) no. 2, pp. 107-110.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Let \( B \) be the open unit ball of a Banach space \( E \), and let \( f : B \rightarrow B \) be a holomorphic map with \( f(0) = 0 \). In this paper, we discuss a condition whereby \( f \) is a linear isometry on \( E \).
Sia \( B \) il disco unità aperto di uno spazio di Banach complesso. Si determina una condizione perché un'applicazione olomorfa \( f : B \rightarrow B \), con \( f(0) = 0 \), sia un'isometria lineare.
@article{RLIN_1997_9_8_2_a2,
     author = {Honda, Tatsuhiro},
     title = {A special version of the {Schwarz} lemma on an infinite dimensional domain},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {107--110},
     publisher = {mathdoc},
     volume = {Ser. 9, 8},
     number = {2},
     year = {1997},
     zbl = {0890.32012},
     mrnumber = {1254816},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_2_a2/}
}
TY  - JOUR
AU  - Honda, Tatsuhiro
TI  - A special version of the Schwarz lemma on an infinite dimensional domain
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1997
SP  - 107
EP  - 110
VL  - 8
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_2_a2/
LA  - en
ID  - RLIN_1997_9_8_2_a2
ER  - 
%0 Journal Article
%A Honda, Tatsuhiro
%T A special version of the Schwarz lemma on an infinite dimensional domain
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1997
%P 107-110
%V 8
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_2_a2/
%G en
%F RLIN_1997_9_8_2_a2
Honda, Tatsuhiro. A special version of the Schwarz lemma on an infinite dimensional domain. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 8 (1997) no. 2, pp. 107-110. http://geodesic.mathdoc.fr/item/RLIN_1997_9_8_2_a2/

[1] L. Belkhchicha, Caractérisation des isomorphismes analytiques sur la boule-unité de \( C^{n} \) pour une norme. Math. Z., 215, 1994, 129-141. | fulltext EuDML | DOI | MR | Zbl

[2] S. Dineen, Complex Analysis in Locally Convex Spaces. North-Holland Math. Studies, 57, 1981. | MR | Zbl

[3] S. Dineen, The Schwarz Lemma. Oxford Mathematical Monographs, 1989. | MR | Zbl

[4] S. Dineen - R. M. Timoney, Complex Geodesics on Convex Domains. Progress in Functional Analysis, 1992, 333-365. | fulltext mini-dml | DOI | MR | Zbl

[5] S. Dineen - R. M. Timoney - J. P. Vigué, Pseudodistances invariantes sur les domaines d'un espace localement convexe. Ann. Scuola Norm. Sup. Pisa, 12, 1985, 515-529. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[6] T. Franzoni - E. Vesentini, Holomorphic Maps and Invariant Distances. North-Holland Math. Studies, 40, 1980. | MR | Zbl

[7] M. Jarnicki - P. Pflug, Invariant Distances and Metrics in Complex Analysis, de Gruyter, Berlin-New York 1983. | DOI | MR | Zbl

[8] H. Hamada, A Schwarz lemma in several complex variables. In: Proceedings of the Third International Colloquium on Finite or Infinite Dimensional Complex Analysis. Seoul, Korea, 1995, 105-110.

[9] M. Nishihara, On the indicator of growth of entire functions of exponential type in infinite dimensional spaces and the Levi problem in infinite dimensional projective spaces. Portugaliae Math., 52, 1995, 61-94. | fulltext EuDML | MR | Zbl

[10] E. Vesentini, Variations on a theme of Carathéodory. Ann. Scuola Norm. Sup. Pisa, 7 (4), 1979, 39-68. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[11] E. Vesentini, Complex geodesics. Compositio Math., 44, 1981, 375-394. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[12] E. Vesentini, Complex geodesics and holomorphic maps. Sympos. Math., 26, 1982, 211-230. | MR | Zbl

[13] J. P. Vigué, Un lemme de Schwarz pour les domaines bornés symétriques irréductibles et certains domaines bornés strictement convexes. Indiana Univ. Math. J., 40, 1991, 239-304. | Zbl

[14] J. P. Vigué, Le lemme de Schwarz et la caractérisation des automorphismes analytiques. Astérisque, 217, 1993, 241-249. | Zbl