Seshadri positive curves in a smooth projective \( 3 \)-fold
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 6 (1995) no. 4, pp. 259-274.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

A notion of positivity, called Seshadri ampleness, is introduced for a smooth curve \( C \) in a polarized smooth projective \( 3 \)-fold \( (X,A) \), whose motivation stems from some recent results concerning the gonality of space curves and the behaviour of stable bundles on \( \mathbb{P}^{3} \) under restriction to \( C \). This condition is stronger than the normality of the normal bundle and more general than \( C \) being defined by a regular section of an ample rank-\( 2 \) vector bundle. We then explore some of the properties of Seshadri-ample curves.
cia. Si introduce una nozione di positività, denominata Seshadri ampiezza, per una curva non-singolare \( C \) in una varietà proiettiva liscia \( 3 \)-dimensionale polarizzata \( (X,A) \), motivata da alcuni recenti risultati concernenti la gonalità di una curva nello spazio e il comportamento di fibrati vettoriali stabili su \( \mathbb{P}^{3} \) sotto restrizione a una curva data. Questa condizione è più forte della normalità del fibrato vettoriale, e più generale dell'essere \( C \) definita da una sezione regolare di un fibrato ampio di rango due. Si esplorano quindi alcune proprietà delle curve Seshadri-ampie.
@article{RLIN_1995_9_6_4_a4,
     author = {Paoletti, Roberto},
     title = {Seshadri positive curves in a smooth projective \( 3 \)-fold},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {259--274},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {4},
     year = {1995},
     zbl = {0874.14018},
     mrnumber = {770932},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_4_a4/}
}
TY  - JOUR
AU  - Paoletti, Roberto
TI  - Seshadri positive curves in a smooth projective \( 3 \)-fold
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1995
SP  - 259
EP  - 274
VL  - 6
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_4_a4/
LA  - en
ID  - RLIN_1995_9_6_4_a4
ER  - 
%0 Journal Article
%A Paoletti, Roberto
%T Seshadri positive curves in a smooth projective \( 3 \)-fold
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1995
%P 259-274
%V 6
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_4_a4/
%G en
%F RLIN_1995_9_6_4_a4
Paoletti, Roberto. Seshadri positive curves in a smooth projective \( 3 \)-fold. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 6 (1995) no. 4, pp. 259-274. http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_4_a4/

[1] E. Arbarello - M. Cornalba - P. Griffiths - J. Harris, The Geometry of Algebraic Curves. Vol. I, Springer-Verlag, 1985. | MR | Zbl

[2] F. Bogomolov, Unstable vector bundles and curves on surfaces. Proc. Int. Congr. Mathem., Helsinki 1978, 517-524. | MR | Zbl

[3] D. Eisenbud - A. Van De Ven, On the normal bundle of smooth rational space curves. Math. Ann., 256, 1981, 453-463. | fulltext EuDML | DOI | MR | Zbl

[4] T. Fujita, On the hyperplane principle of Lefshetz. J. Math. Soc. Japan, 32, 1980, 153-165. | fulltext mini-dml | DOI | MR | Zbl

[5] W. Fulton, Intersection Theory. Springer-Verlag, 1984. | MR | Zbl

[6] W. Fulton - R. Lazarsfeld, Positivity and excess intersection. in : Enumerative and Classical Algebraic Geometry. Prog, in Math., 24, (Nice 1981) Birkhäuser, 1982, 97-105. | MR | Zbl

[7] W. Fulton - R. Lazarsfeld, On the connectedness of degeneracy loci and special divisors. Acta Math., 146, 1981, 271-283. | DOI | MR | Zbl

[8] W. Fulton - R. Lazarsfeld, Positive polynomials for ample vector bundles. Ann of Math., 118, 1983, 35-60. | DOI | MR | Zbl

[9] R. Hartshorne, Ample Subvarieties of Algebraic Varieties. LNM, 156, Springer-Verlag, 1970. | MR | Zbl

[10] Y. Kawamata - K. Matsuda - K. Matsuhe, Introduction to the minimal model problem. In: T. ODA (ed.), Algebraic Geometry. Sendai 1985, Adv. St. in Pure Math., vol. 10, North-Holland, 1987, 283-360. | MR | Zbl

[11] R. Lazarsfeld, Some applications of the theory of ample vector bundles. In: S. GRECO - R. STRANO (eds.), Complete Intersections. Arcireale 1983, LNM 1092, Springer-Verlag, 1984, 29-61. | DOI | MR | Zbl

[12] R. Lazarsfeld, A sampling of vector bundle techniques in the study of linear series. In: M. CORNALBA et al. (eds.), Proceedings of the Intern. Centre Theor. Phys. College on Riemann Surfaces (Trieste 1987). World Scientific Press, 1989, 500-559. | MR | Zbl

[13] A. Lopez, Noether-Lefshetz theory and the Picard group of projective surface. PhD Thesis, Brown University, 1988. | Zbl

[14] R. Paoletti, Free pencils on divisors. Mathematische Annalen, to appear. | fulltext EuDML | fulltext mini-dml | DOI | MR | Zbl

[15] R. Paoletti, Seshadri constants, gonality of space curves and restriction of stable bundles. J. Diff. Geom., 40, 1972, 475-504. | fulltext mini-dml | MR | Zbl

[16] K. Paranjape - S. Ramanan, On the canonical ring of a curve. In: Algebraic Geometry and Commutative Algebra, in Honor of Masayoshi Nagata. Kinokuniya, Tokio 1988, vol. II, 503-516. | MR | Zbl

[17] F. Serrano, Extension of morphisms defined on a divisor. Math. Ann., 277, 1987, 395-413. | fulltext EuDML | DOI | MR | Zbl

[18] B. Shiffman - A. J. Sommese, Vanishing theorems on complex manifolds. Progr. Math., vol. 56, Birkhäuser, Boston 1985. | MR | Zbl

[19] A. J. Sommese, On manifolds that cannot be ample divisors. Math. Ann., 221, 1987, 55-72. | fulltext EuDML | MR | Zbl

[20] R. D. Speiser, Cohomological dimension of abelian varieties. Thesis, Cornell University, 1970. | MR | Zbl