Structural discontinuities to approximate some optimization problems with a nonmonotone impulsive character
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 6 (1995) no. 2, pp. 93-109.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In some preceding works we consider a class \( \mathcal{OP} \) of Boltz optimization problems for Lagrangian mechanical systems, where it is relevant a line \( l = l_{\gamma(\cdot)} \), regarded as determined by its (variable) curvature function \( \gamma(\cdot) \) of domain \( \left[ s_{0},s_{1} \right] \). Assume that the problem \( \widetilde{\mathcal{P}} \in \mathcal{OP} \) is regular but has an impulsive monotone character in the sense that near each of some points \( \delta_{1} \) to \( \delta_{\nu} \gamma(\cdot) \) is monotone and \( |\gamma'(\cdot)| \) is very large. In [10] we propose a procedure belonging to the theory of impulsive controls, in order to simplify \( \widetilde{\mathcal{P}} \) into a structurally discontinuous problem \( \mathcal{P} \). This is analogous to treating a biliard ball, disregarding its elasticity properties, as a rigid body bouncing according to a suitable restitution coefficient. Here the afore-mentioned treatment of \( \widetilde{\mathcal{P}} \) is extended to the case where its impulsive character fails to be monotone. Let \( c_{r,0} \) to \( c_{r,m_{r}} \) be the successive maxima and minima of \( \gamma(\cdot) \) or \( - \gamma(\cdot) \) near \( \delta_{r} (r = 1, \ldots, \nu) \). In constructing the problem \( \mathcal{P} \), which simplifies and approximates \( \widetilde{\mathcal{P}} \) as well as in [10] it is essential to approximate \( l_{\gamma(\cdot)} \) by means of a line \( l_{c(\cdot)} \) with \( c(\cdot) \) discontinuous only at \( \delta_{1}, \ldots, \delta_{\nu} \) and with \( |c'(\cdot)| \) never very large; furthermore now we must take the quantities \( c_{r,0} \) to \( c_{r,m_{r}} \) into account, e.g., by adding a «nonmonotonicity» type at \( \delta_{r} \), which vanishes in the monotone case \( (r = 1, \ldots, \nu) \). Starting from [10] we extend to the afore-mentioned general situation the notions of weak lower limit \( J^{*} \) of the functional to minimize, extended admissible process (which has an additional part in each \( \left[ c_{r,i-1},c_{r,i} \right] \)) and extended solution of the problem \( \mathcal{P} \), or better \( ( \mathcal{P}_{\nu}; \sigma_{r,1}, \ldots , \sigma_{r,m_{r}} ) \) where \( \sigma_{r,i} = c_{r,i} —c_{r,i-1} \)\( (i = 1, \ldots , m_{r}; r = 1, \ldots , \nu) \). In the general case we consider the extended (impulsive) original problem and the extended functional to minimize. This has an impulsive part at each of the points \( \delta_{1} \) to \( \delta_{\nu} \), as well as the differential constraints, complementary equations, and Pontrjagin's optimization conditions. Besides the end conditions at \( s_{0} \) and \( s_{1} \) there are junction conditions at \( \delta_{1} \) to \( \delta_{\nu} \). In the general case being considered we state a version of Pontrjagin's maximum principle and an existence theorem for the extended (impulsive) problem. We also study some properties of \( J^{*} \), e.g. when \( J^{*} \) is a weak minimum. In particular, within both the monotone case and the nonmonotone one, we show that the quantity \( J^{*} \), defined as a certain lower limit, equals the analogous limit; and this is practically a necessary and sufficient condition for the present approximation theory, started in [10], to be satisfactory.
In precedenti lavori abbiamo considerato una classe \( \mathcal{OP} \) di problemi di ottimizzazione di Boltz per sistemi meccanici Lagrangiani, nei quali è rilevante una linea \( l = l_{\gamma(\cdot)} \), considerata come determinata dalla sua funzione (variabile) di curvatura \( \gamma(\cdot) \) di dominio \( \left[ s_{0},s_{1} \right] \). Il problema \( \widetilde{\mathcal{P}} \in \mathcal{OP} \) sia regolare ma abbia carattere impulsivo monotono nel senso che \( \gamma(\cdot) \) sia monotona e con \( |\gamma '(\cdot)| \) molto grande vicino a ciascuno di alcuni punti \( \delta_{1}, \ldots ,\delta_{\nu} \). In[10] abbiamo costruito un procedimento entro la teoria del controllo impulsivo, atto a semplificare \( \widetilde{\mathcal{P}} \) in un problema strutturalmente discontinuo \( \mathcal{P} \). Ciò è analogo al trattare una palla da bigliardo, anziché per es. con la teoria dell'elasticità, considerandola come un corpo rigido rimbalzante secondo un opportuno coefficiente di restituzione. Qui estendiamo la su accennata trattazione in [10] al caso che il carattere impulsivo di \( \widetilde{\mathcal{P}} \) sia non monotono. Siano \( c_{r,0}, \ldots , c_{r,m_{r}} \) i successivi massimi e minimi di \( \gamma(\cdot) \) o di \( - \gamma(\cdot) \) nella vicinanza di \( \delta_{r} (r = 1, \ldots, \nu) \). Nel costruire il problema \( \mathcal{P} \) semplificante e approssimante \( \widetilde{\mathcal{P}} \), come in [10] è ora essenziale considerare una linea \( l_{c(\cdot)} \) approssimante \( l_{\gamma(\cdot)} \) con \( c(\cdot) \) discontinua solo in \( \delta_{1}, \ldots, \delta_{\nu} \) e con \( |c'(\cdot)| \) mai molto grande; inoltre ora si deve tener conto delle suddette quantità \( c_{r,0} , \ldots , c_{r,m_{r}} \) per es., attraverso il «tipo di non monotonia» in \( \delta_{r} \), che svanisce nel caso monotono \( (r = 1, \ldots, \nu) \). Partendo da [10] estendiamo alla suddetta situazione generale le nozioni di estremo inferiore debole \( J^{*} \) del funzionale da minimizzare, processo ammissibile esteso (che ha parti addizionali in \( \left[ c_{r,i-1},c_{r,i} \right] \)) e soluzione estesa del problema \( \mathcal{P} \), o meglio \( ( \mathcal{P}_{\nu}; \sigma_{r,1}, \ldots , \sigma_{r,m_{r}} ) \) ove \( \sigma_{r,i} = c_{r,i} —c_{r,i-1} \)\( (i = 1, \ldots , m_{r}; r = 1, \ldots , \nu) \). Nel caso generale consideriamo pure il problema originale (impulsivo) esteso e il funzionale esteso da minimizzare. Questo ha parti impulsive nei punti \( \delta_{1} , \ldots , \delta_{\nu} \), al pari dei vincoli differenziali, delle equazioni complementari e delle condizioni di ottimizzazione di Pontrjagin. Oltre alle condizioni ai limiti in \( s_{0} \) ed \( s_{1} \) vi sono condizioni di giunzione in \( \delta_{1} , \ldots , \delta_{\nu} \). Nel detto caso generale enunciamo una versione del principio di massimo di Pontrjagin e un teorema di esistenza per il problema (impulsivo) esteso. Studiamo anche alcune proprietà di \( J^{*} \), tra l'altro quando esso è minimo debole. In particolare, nel caso monotono o no, mostriamo che la quantità \( J^{*} \), definita come un certo limite inferiore, eguaglia l'analogo limite; e ciò è praticamente una condizione necessaria e sufficiente affinché la presente teoria di approssimazione, iniziata in [10], sia soddisfacente.
@article{RLIN_1995_9_6_2_a1,
     author = {Bressan, Aldo and Motta, Monica},
     title = {Structural discontinuities to approximate some optimization problems with a nonmonotone impulsive character},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {93--109},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {2},
     year = {1995},
     zbl = {0858.70012},
     mrnumber = {934514},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_2_a1/}
}
TY  - JOUR
AU  - Bressan, Aldo
AU  - Motta, Monica
TI  - Structural discontinuities to approximate some optimization problems with a nonmonotone impulsive character
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1995
SP  - 93
EP  - 109
VL  - 6
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_2_a1/
LA  - en
ID  - RLIN_1995_9_6_2_a1
ER  - 
%0 Journal Article
%A Bressan, Aldo
%A Motta, Monica
%T Structural discontinuities to approximate some optimization problems with a nonmonotone impulsive character
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1995
%P 93-109
%V 6
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_2_a1/
%G en
%F RLIN_1995_9_6_2_a1
Bressan, Aldo; Motta, Monica. Structural discontinuities to approximate some optimization problems with a nonmonotone impulsive character. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 6 (1995) no. 2, pp. 93-109. http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_2_a1/

[1] Alberto Bressan, On differential systems with impulsive controls. Rend. Sem. Mat. Univ. Padova, 78, 1987, 227-236. | fulltext EuDML | fulltext mini-dml | MR

[2] Alberto Bressan - F. Rampazzo, Impulsive control systems with commutative vector fields. Journal of optimization theory and applications, 71, 1991, 67-83. | DOI | MR | Zbl

[3] Aldo Bressan, On the application of control theory to certain problems for Lagrangian systems, and hyperimpulsive motions for these. I. On some general mathematical considerations on controllizable parameters. Atti Acc. Lincei Rend. fis., s. 8, vol. 82, fasc. 1, 1988, 91-105. | MR | Zbl

[4] Aldo Bressan, On the application of control theory to certain problems for Lagrangian systems, and hyperimpulsive motions for these. II. Some purely mathematical considerations for hyper-impulsive motions. Atti Acc. Lincei Rend. fis., s. 8, vol. 82, fasc. 1, 1988, 107-118. | MR | Zbl

[5] Aldo Bressan, Hyperimpulsive motions and controllizable coordinates for Lagrangian systems. Atti Acc. Lincei Mem. fis., s. 8, vol. 19, sez. 1, 1990, 197-246. | MR

[6] Aldo Bressan, On some control problems concerning the ski or the swing. Mem. Mat. Acc. Lincei, s. 9, vol. 1, 1991, 149-196. | MR | Zbl

[7] Aldo Bressan - M. Favretti, On motions with bursting characters for Lagrangian mechanical systems with a scalar control. I. Existence of a wide class of Lagrangian systems capable of motions with bursting characters. Rend. Mat. Acc. Lincei, s. 9, vol. 2, 1991, 339-343. | fulltext mini-dml | MR | Zbl

[8] Aldo Bressan - M. Favretti, On motions with bursting characters for Lagrangian mechanical systems with a scalar control. II. A geodesic property of motions with bursting characters for Lagrangian systems. Rend. Mat. Acc. Lincei, s. 9, vol. 3, 1992, 35-42. | fulltext mini-dml | MR | Zbl

[9] Aldo Bressan - M. Motta, A class of mechanical systems with some coordinates as controls. A reduction of certain optimization problems for them. Solutions methods. Mem. Mat. Acc. Lincei, s. 9, vol. 2, 1993, 5-30. | MR | Zbl

[10] Aldo Bressan - M. Motta, Some optimization problems with a monotone impulsive character. Approximation by means of structural discontinuities. Mem. Mat. Acc. Lincei, s. 9, vol. 2, 1994, 31-52. | MR | Zbl

[11] Aldo Bressan - M. Motta, Some optimization problems for the ski simple because of structural discontinuities. Preprint.

[12] Aldo Bressan - M. Motta, On control problems of minimum time for Lagrangian systems similar to a swing. I. Convexity criteria for sets. Rend. Mat. Acc. Lincei, s. 9, vol. 5, 1994, 247-254. | fulltext bdim | MR | Zbl

[13] Aldo Bressan - M. Motta, On control problems of minimum time for Lagrangian systems similar to a swing. II. Application of convexity criteria to certain minimum time problems. Rend. Mat. Acc. Lincei, s. 9, vol. 5, 1994, 255-264. | fulltext bdim | MR | Zbl

[14] M. Favretti, Essential character of the assumptions of a theorem of Aldo Bressan on the coordinates of a Lagrangian system that are fit for jumps. Atti Istituto Veneto di Scienze Lettere ed Arti, 149, 1991, 1-14. | MR | Zbl

[15] M. Favretti, Some bounds for the solutions of certain families of Cauchy problems connected with bursting phenomena. Atti Istituto Veneto di Scienze Lettere ed Arti, 149, 1991, 61-75. | MR | Zbl

[16] B. Piccoli, Time-optimal control problems for the swing and the ski. International Journal of Control, to appear. | fulltext mini-dml | DOI | MR | Zbl

[17] F. Rampazzo, On Lagrangian systems with some coordinates as controls. Atti Acc. Lincei Rend. fis., s. 8, vol. 82, 1988, 685-695. | MR | Zbl