A min-max theorem for multiple integrals of the Calculus of Variations and applications
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 6 (1995) no. 1, pp. 29-35

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this paper we deal with the existence of critical points for functionals defined on the Sobolev space \( W_{0}^{1,2} (\Omega) \) by \( J(v) = \int_{\Omega} \mathfrak{I} (x,v,Dv) \, dx \), \( v \in W_{0}^{1,2} (\Omega) \), where \( \Omega \) is a bounded, open subset of \( \mathbb{R}^{N} \). Since the differentiability can fail even for very simple examples of functionals defined through multiple integrals of Calculus of Variations, we give a suitable version of the Ambrosetti-Rabinowitz Mountain Pass Theorem, which enables us to the study of critical points for functionals which are not differentiable in all directions. Then we present some applications of this theorem to the study of the existence and multiplicity of nonnegative critical points for multiple integrals of the Calculus of Variations.
@article{RLIN_1995_9_6_1_a3,
     author = {Arcoya, David and Boccardo, Lucio},
     title = {A min-max theorem for multiple integrals of the {Calculus} of {Variations} and applications},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {29--35},
     publisher = {mathdoc},
     volume = {Ser. 9, 6},
     number = {1},
     year = {1995},
     zbl = {0831.49012},
     mrnumber = {MR1340279},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_1_a3/}
}
TY  - JOUR
AU  - Arcoya, David
AU  - Boccardo, Lucio
TI  - A min-max theorem for multiple integrals of the Calculus of Variations and applications
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1995
SP  - 29
EP  - 35
VL  - 6
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_1_a3/
LA  - en
ID  - RLIN_1995_9_6_1_a3
ER  - 
%0 Journal Article
%A Arcoya, David
%A Boccardo, Lucio
%T A min-max theorem for multiple integrals of the Calculus of Variations and applications
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1995
%P 29-35
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_1_a3/
%G en
%F RLIN_1995_9_6_1_a3
Arcoya, David; Boccardo, Lucio. A min-max theorem for multiple integrals of the Calculus of Variations and applications. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 6 (1995) no. 1, pp. 29-35. http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_1_a3/