On the number of solutions of equation \( x^{{p}^{ k}} = 1 \) in a finite group
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 6 (1995) no. 1, pp. 5-12
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Theorem A yields the condition under which the number of solutions of equation \( x^{{p}^{ k}} = 1 \) in a finite \( p \)-group is divisible by \( p^{n + k} \) (here \( n \) is a fixed positive integer). Theorem B which is due to Avinoam Mann generalizes the counting part of the Sylow Theorem. We show in Theorems C and D that congruences for the number of cyclic subgroups of order \( p^{k} \) which are true for abelian groups hold for more general finite groups (for example for groups with abelian Sylow \( p \)-subgroups).
@article{RLIN_1995_9_6_1_a0,
author = {Berkovich, Yakov},
title = {On the number of solutions of equation \( x^{{p}^{ k}} = 1 \) in a finite group},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {5--12},
publisher = {mathdoc},
volume = {Ser. 9, 6},
number = {1},
year = {1995},
zbl = {0840.20017},
mrnumber = {MR1340276},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_1_a0/}
}
TY - JOUR
AU - Berkovich, Yakov
TI - On the number of solutions of equation \( x^{{p}^{ k}} = 1 \) in a finite group
JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY - 1995
SP - 5
EP - 12
VL - 6
IS - 1
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_1_a0/
LA - en
ID - RLIN_1995_9_6_1_a0
ER -
%0 Journal Article
%A Berkovich, Yakov
%T On the number of solutions of equation \( x^{{p}^{ k}} = 1 \) in a finite group
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1995
%P 5-12
%V 6
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_1_a0/
%G en
%F RLIN_1995_9_6_1_a0
Berkovich, Yakov. On the number of solutions of equation \( x^{{p}^{ k}} = 1 \) in a finite group. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 6 (1995) no. 1, pp. 5-12. http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_1_a0/