Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1995_9_6_1_a0, author = {Berkovich, Yakov}, title = {On the number of solutions of equation \( x^{{p}^{ k}} = 1 \) in a finite group}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {5--12}, publisher = {mathdoc}, volume = {Ser. 9, 6}, number = {1}, year = {1995}, zbl = {0840.20017}, mrnumber = {241534}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_1_a0/} }
TY - JOUR AU - Berkovich, Yakov TI - On the number of solutions of equation \( x^{{p}^{ k}} = 1 \) in a finite group JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1995 SP - 5 EP - 12 VL - 6 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_1_a0/ LA - en ID - RLIN_1995_9_6_1_a0 ER -
%0 Journal Article %A Berkovich, Yakov %T On the number of solutions of equation \( x^{{p}^{ k}} = 1 \) in a finite group %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1995 %P 5-12 %V 6 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_1_a0/ %G en %F RLIN_1995_9_6_1_a0
Berkovich, Yakov. On the number of solutions of equation \( x^{{p}^{ k}} = 1 \) in a finite group. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 6 (1995) no. 1, pp. 5-12. http://geodesic.mathdoc.fr/item/RLIN_1995_9_6_1_a0/
[1] On \( p \)-groups of finite order. Sibirsk. Math. J., 9, 6, 1968, 1284-1306 (in Russian). | MR
,[2] On the number of elements of given order in a finite \( p \)-group. Israel J. Math., 73, 1991, 107-112. | DOI | MR | Zbl
,[3] Counting theorems for finite \( p \)-groups. Arch. Math., 59, 1992, 215-222. | DOI | MR | Zbl
,[4] Generalizations of certain elementary theorems on \( p \)-groups. Proc. London Math. Soc., 11, 1961, 1-22. | MR | Zbl
,[5] Congruences sur le nombre de sous-groupes d'ordre \( p^{k} \) dans un groupe fini. Bull. Soc. Math. Belg., 18, 1966, 129-132. | MR | Zbl
,[6] Counting group elements of order \( p \) modulo \( p^{2} \). Proc. Amer. Math. Soc., 66, 1977, 247-250. | MR | Zbl
,