Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1994_9_5_3_a3, author = {Bellettini, Giovanni and Paolini, Maurizio}, title = {Two examples of fattening for the curvature flow with a driving force}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {229--236}, publisher = {mathdoc}, volume = {Ser. 9, 5}, number = {3}, year = {1994}, zbl = {0826.35051}, mrnumber = {1205983}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_3_a3/} }
TY - JOUR AU - Bellettini, Giovanni AU - Paolini, Maurizio TI - Two examples of fattening for the curvature flow with a driving force JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1994 SP - 229 EP - 236 VL - 5 IS - 3 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_3_a3/ LA - en ID - RLIN_1994_9_5_3_a3 ER -
%0 Journal Article %A Bellettini, Giovanni %A Paolini, Maurizio %T Two examples of fattening for the curvature flow with a driving force %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1994 %P 229-236 %V 5 %N 3 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_3_a3/ %G en %F RLIN_1994_9_5_3_a3
Bellettini, Giovanni; Paolini, Maurizio. Two examples of fattening for the curvature flow with a driving force. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 5 (1994) no. 3, pp. 229-236. http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_3_a3/
[1] Curvature-driven flows: a variational approach. SIAM J. Control Optim., 31, 1993, 387-437. | DOI | MR | Zbl
- - ,[2] On the formation of singularities in the curve shortening flow. J. Differential Geom., 33, 3, 1991, 601-633. | fulltext mini-dml | MR | Zbl
,[3] Front propagation and phase field theory. SIAM J. Control Optim., 31, 1993, 439-469. | DOI | MR | Zbl
- - ,[4] The Motion of a Surface by its Mean Curvature. Princeton University Press, Princeton 1978. | MR | Zbl
,[5] Motion by mean curvature as the singular limit of Ginzburg-Landau dynamics. J. Differential Equations, 90, 1991, 211-237. | DOI | MR | Zbl
- ,[6] Uniqueness and existence of viscosity solutions of generalized mean curvature flow equation. J. Differential Geom., 33, 1991, 749-786. | fulltext mini-dml | MR | Zbl
- - ,[7] Users guide to viscosity solutions of second order partial differential equations. Bull. Amer. Math. Soc. (N.S.), 27, 1992, 1-67. | fulltext mini-dml | DOI | MR | Zbl
- - ,[8] M. G. CRANDALL - P. L. LIONS, Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc., 227, 1983, 1-42. | DOI | MR | Zbl
[9] Some conjectures on flow by mean curvature. In: M. L. BENEVENTO - T. BRUNO - C. SBORDONE (eds.), Methods of real analysis and partial differential equations. Liguori, Napoli 1990. | Zbl
,[10] Conjectures on limits of some quasi linear parabolic equations and flow by mean curvature. Lecture delivered at the meeting on Partial Differential Equations and Related Topics in honour of L. Niremberg, Trento, September 3-7, 1990. | Zbl
,[11] Congetture sui limiti delle soluzioni di alcune equazioni paraboliche quasi lineari. In: Nonlinear Analysis. A Tribute in Honour of G. Prodi. S.N.S. Quaderni, Pisa 1991, 173-187. | Zbl
,[12] Phase transitions and generalized motion by mean curvature. Comm. Pure Appl. Math., 45, 1992, 1097-1123. | DOI | MR | Zbl
- - ,[13] Motion of level sets by mean curvature. I. J. Differential Geom., 33, 1991, 635-681. | fulltext mini-dml | MR | Zbl
- ,[14] Motion of level sets by mean curvature. II. Trans. Amer. Math. Soc., 330, 1992, 321-332. | DOI | MR | Zbl
- ,[15] Motion of level sets by mean curvature. III. J. Geom. An., 2, 1992, 121-150. | DOI | MR | Zbl
- ,[16] Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains. Indiana Univ. Math. J., 40, 1991, 443-470. | DOI | MR | Zbl
- - - ,[17] The heat equation shrinks embedded plane curves to round points. J. Differential Geom., 26, 1987, 285-314. | fulltext mini-dml | MR | Zbl
,[18] Asymptotic behavior for singularities of the mean curvature flow. J. Differential Geom., 31, 1990, 285-299. | fulltext mini-dml | MR | Zbl
,[19] Generalized flow of sets by mean curvature on a manifold. Indiana Univ. Math. J., 41, 1992, 671-705. | DOI | MR | Zbl
,[20] Convergence of the Allen-Cahn equation to Brakkes motion by mean curvature. J. Differential Geom., 38, 1993, 417-461. | fulltext mini-dml | MR | Zbl
,[21] The maximum principle for viscosity solutions of second-order fully nonlinear partial differential equations. Arch. Rational Mech. Anal., 101, 1988, 1-27. | DOI | MR | Zbl
,[22] Optimal control of diffusion processes and Hamilton-Jacobi-Bellman equations, I. Comm. Partial Differential Equations, 8, 1983, 1101-1134. | DOI | MR | Zbl
,[23] Asymptotic and numerical analyses of the mean curvature flow with a space-dependent relaxation parameter. Asymptotic Anal., 5, 1992, 553-574. | MR | Zbl
- ,[24] Motion of a set by the curvature of its boundary. J. Differential Equations, 101, 1993, 313-372. | DOI | MR | Zbl
,[25] Ginzburg-Landau equation and motion by mean curvature, I: convergence. Research report n. 93-NA-026, August 1993, Carnegie Mellon University. | Zbl
,[26] Singularities and uniqueness of cylindrically symmetric surfaces moving by mean curvature. Comm. Partial Differential Equations, 18, 1993, 859-894. | DOI | MR | Zbl
- ,