Convex approximation of an inhomogeneous anisotropic functional
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 5 (1994) no. 2, pp. 177-187

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The numerical minimization of the functional \( \mathcal{F} (u) = \int_{\Omega} \phi (x,\nu_{u}) |Du| + \int_{\partial \Omega} \mu u \, d\mathcal{H}^{n-1} - \int_{\Omega} \kappa u \, dx \), \( u \in BV(\Omega; \{-1, 1\}) \) is addressed. The function \( \phi \) is continuous, has linear growth, and is convex and positively homogeneous of degree one in the second variable. We prove that \( \mathcal{F} \) can be equivalently minimized on the convex set \( BV(\Omega; \left[-1, 1\right]) \) and then regularized with a sequence \( \{\mathcal{F}_{\epsilon}(u)\}_{\epsilon} \), of stricdy convex functionals defined on \( BV(\Omega; \left[-1, 1\right]) \). Then both \( \mathcal{F} \) and \( \mathcal{F}_{\epsilon} \), can be discretized by continuous linear finite elements. The convexity property of the functionals on \( BV(\Omega; \left[-1, 1\right]) \) is useful in the numerical minimization of \( \mathcal{F} \). The \( \Gamma — L_{1} (\Omega) \)-convergence of the discrete functionals \( \{ \mathcal{F}_{h} \}_{h} \) and \( \{ \mathcal{F}_{\epsilon,h} \}_{\epsilon,h} \) to \( \mathcal{F} \), as well as the compactness of any sequence of discrete absolute minimizers, are proven.
@article{RLIN_1994_9_5_2_a7,
     author = {Bellettini, Giovanni and Paolini, Maurizio},
     title = {Convex approximation of an inhomogeneous anisotropic functional},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {177--187},
     publisher = {mathdoc},
     volume = {Ser. 9, 5},
     number = {2},
     year = {1994},
     zbl = {0809.65069},
     mrnumber = {MR1292573},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_2_a7/}
}
TY  - JOUR
AU  - Bellettini, Giovanni
AU  - Paolini, Maurizio
TI  - Convex approximation of an inhomogeneous anisotropic functional
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1994
SP  - 177
EP  - 187
VL  - 5
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_2_a7/
LA  - en
ID  - RLIN_1994_9_5_2_a7
ER  - 
%0 Journal Article
%A Bellettini, Giovanni
%A Paolini, Maurizio
%T Convex approximation of an inhomogeneous anisotropic functional
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1994
%P 177-187
%V 5
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_2_a7/
%G en
%F RLIN_1994_9_5_2_a7
Bellettini, Giovanni; Paolini, Maurizio. Convex approximation of an inhomogeneous anisotropic functional. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 5 (1994) no. 2, pp. 177-187. http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_2_a7/