Convex approximation of an inhomogeneous anisotropic functional
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 5 (1994) no. 2, pp. 177-187
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
The numerical minimization of the functional \( \mathcal{F} (u) = \int_{\Omega} \phi (x,\nu_{u}) |Du| + \int_{\partial \Omega} \mu u \, d\mathcal{H}^{n-1} - \int_{\Omega} \kappa u \, dx \), \( u \in BV(\Omega; \{-1, 1\}) \) is addressed. The function \( \phi \) is continuous, has linear growth, and is convex and positively homogeneous of degree one in the second variable. We prove that \( \mathcal{F} \) can be equivalently minimized on the convex set \( BV(\Omega; \left[-1, 1\right]) \) and then regularized with a sequence \( \{\mathcal{F}_{\epsilon}(u)\}_{\epsilon} \), of stricdy convex functionals defined on \( BV(\Omega; \left[-1, 1\right]) \). Then both \( \mathcal{F} \) and \( \mathcal{F}_{\epsilon} \), can be discretized by continuous linear finite elements. The convexity property of the functionals on \( BV(\Omega; \left[-1, 1\right]) \) is useful in the numerical minimization of \( \mathcal{F} \). The \( \Gamma — L_{1} (\Omega) \)-convergence of the discrete functionals \( \{ \mathcal{F}_{h} \}_{h} \) and \( \{ \mathcal{F}_{\epsilon,h} \}_{\epsilon,h} \) to \( \mathcal{F} \), as well as the compactness of any sequence of discrete absolute minimizers, are proven.
@article{RLIN_1994_9_5_2_a7,
author = {Bellettini, Giovanni and Paolini, Maurizio},
title = {Convex approximation of an inhomogeneous anisotropic functional},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {177--187},
year = {1994},
volume = {Ser. 9, 5},
number = {2},
zbl = {0809.65069},
mrnumber = {MR1292573},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_2_a7/}
}
TY - JOUR AU - Bellettini, Giovanni AU - Paolini, Maurizio TI - Convex approximation of an inhomogeneous anisotropic functional JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1994 SP - 177 EP - 187 VL - 5 IS - 2 UR - http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_2_a7/ LA - en ID - RLIN_1994_9_5_2_a7 ER -
%0 Journal Article %A Bellettini, Giovanni %A Paolini, Maurizio %T Convex approximation of an inhomogeneous anisotropic functional %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1994 %P 177-187 %V 5 %N 2 %U http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_2_a7/ %G en %F RLIN_1994_9_5_2_a7
Bellettini, Giovanni; Paolini, Maurizio. Convex approximation of an inhomogeneous anisotropic functional. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 5 (1994) no. 2, pp. 177-187. http://geodesic.mathdoc.fr/item/RLIN_1994_9_5_2_a7/