Autovalori di alcune disequazioni variazionali con vincoli puntati sulle derivate
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 4 (1993) no. 3, pp. 185-195.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Si studiano problemi di autovalori per disequazioni variazionali semilineari ellittiche con un ostacolo puntuale sulla derivata prima della funzione incognita. Si mette in particolare in evidenza il ruolo della «ipotesi di non tangenza» tra il convesso, che viene definito dalla condizione di ostacolo, e la sfera dello spazio funzionale, su cui è naturale studiare un problema di autovalori. Tale condizione viene analizzata in alcuni casi concreti e si indicano alcune ipotesi che, garantendone la validità, danno luogo ad alcuni risultati di esistenza e molteplicità.
Some eigenvalue problems for elliptic semilinear variational inequalities are studied, the main feature being the presence of an obstacle on the first derivative of the unknown function. The role of a «nontangency» assumption is put into evidence: to have existence and multiplicity results one has to check that the convex set, produced by the obstacle condition, and the sphere in the function space, on which it seems natural to study eigenvalue problems, are not tangent. This condition is studied in some problems of the fourth and of the second order and some sufficient conditions for it are found, which allow to get results of existence and multiplicity.
@article{RLIN_1993_9_4_3_a3,
     author = {Saccon, Claudio},
     title = {Autovalori di alcune disequazioni variazionali con vincoli puntati sulle derivate},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {185--195},
     publisher = {mathdoc},
     volume = {Ser. 9, 4},
     number = {3},
     year = {1993},
     zbl = {0801.49013},
     mrnumber = {488101},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_3_a3/}
}
TY  - JOUR
AU  - Saccon, Claudio
TI  - Autovalori di alcune disequazioni variazionali con vincoli puntati sulle derivate
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1993
SP  - 185
EP  - 195
VL  - 4
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_3_a3/
LA  - it
ID  - RLIN_1993_9_4_3_a3
ER  - 
%0 Journal Article
%A Saccon, Claudio
%T Autovalori di alcune disequazioni variazionali con vincoli puntati sulle derivate
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1993
%P 185-195
%V 4
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_3_a3/
%G it
%F RLIN_1993_9_4_3_a3
Saccon, Claudio. Autovalori di alcune disequazioni variazionali con vincoli puntati sulle derivate. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 4 (1993) no. 3, pp. 185-195. http://geodesic.mathdoc.fr/item/RLIN_1993_9_4_3_a3/

[1] M. S. Berger, Nonlinearity and Funtional Analysis. Academic Press, New York-San Francisco-London 1977. | MR | Zbl

[2] G. Cobanov - A. Marino - D. Scolozzi, Multiplicity of eigenvalues of the Laplace operator with respect to an obstacle and non tangency conditions. Nonlinear Anal. Th. Meth. Appl., vol. 15, 3, 1990, 199-215. | DOI | MR | Zbl

[3] G. Cobanov - A. Marino - D. Scolozzi, Evolution equations for the eigenvalue problem for the Laplace operator with respect to an obstacle. Rend. Accad. Naz. Sci. XL, Mem. Mat., 14, 1990, 139-162. | MR | Zbl

[4] E. De Giorgi - A. Marino - M. Tosques, Problemi di evoluzione in spazi metrici e curve di massima pendenza. Atti Acc. Lincei Rend. fis., s. 8, vol. 68, 1980, 180-187. | MR | Zbl

[5] M. Degiovanni, Bifurcation problems for nonlinear elliptic variational inequalities. Ann. Fac. Sci. Toulouse, 10, 1989, 215-258. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[6] M. Degiovanni, Homotopical properties of a class of nonsmooth functions. Ann. Mat. Pura e Applicata, vol. CLVI, 1990, 37-71. | DOI | MR | Zbl

[7] M. Degiovanni - A. Marino, Nonsmooth variational bifurcation. Atti Acc. Lincei Rend. fis., s. 8, vol. 81, 1987, 259-269. | MR | Zbl

[8] M. Degiovanni - A. Marino - M. Tosques, Evolution equations with lack of convexity. Nonlinear Anal. Th. Meth. Appl., (9), 12, 1985, 1401-1443. | DOI | MR | Zbl

[9] C. Do, Bifurcation theory for elastic plates subjected to unilateral conditions. J. Math. Anal. Appl., 60, 1977, 435-448. | MR | Zbl

[10] M. A. Krasnoselskii, Topological Methods in the Theory of Nonlinear Integral Equations. Gosudarstv. Izdat. Tehn.-Teor. Lit., Moscow 1956. The Macmillan Co., New York 1964. | MR

[11] M. Kučera, A new method for obtaining eigenvalues of variational inequalities: operators with multiple eigenvalues. Czechoslovak Math. J., 32, 1982, 197-207. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[12] M. Kučera, Bifurcation point of variational inequalities. Czechoslovak Math. J., 32, 1982, 208-226. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[13] M. Kučera, A global bifurcation theorem for obtaining eigenvalues and bifurcation points. Czechoslovak Math. J., 38, 1988, 120-137. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[14] M. Kučera - J. Nečas - J. Souček, The eigenvalue problem for variational inequalities and a new version of the Lustemik-Schnirelmann theory. In: Nonlinear Analysis. Collection of papers in honour Erich H. Rothe. Academic Press, New York 1978, 125-143. | MR | Zbl

[15] A. Marino - C. Saccon - M. Tosques, Curves of maximal slope and parabolic variational inequalities on non convex constraints. Annali Sc. Norm. Sup. Pisa, vol. XVI, 1989, 281- 330. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[16] A. Marino - D. Scolozzi, Geodetiche con ostacolo. Boll. Un. Mat. Ital., B (6) 2, 1983, 1-31. | MR

[17] A. Marino - M. Tosques, Some variational problems with lack of convexity and some partial differential inequalities. In: Methods of Nonconvex Analysis. Lecture notes in math., 1446, Springer-Verlag, 1989, 58-83. | DOI | MR | Zbl

[18] E. Miersemann, Eigenwertaufgaben für Variationsungleichungen. Math. Nachr., 100, 1981, 221-228. | DOI | MR | Zbl

[19] E. Miersemann, On higher eigenvalues of variational inequalities. Comment. Math. Univ. Carolin., 24, 1983, 657-665. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[20] E. Miersemann, Eigenvalue problems in convex sets. Mathematical Control Theory: 401-408, Banach Center Pubbl., 14 PWN, Warsaw 1985. | MR

[21] P. Quittner, Spectral analysis of variational inequalities. Comment. Math. Univ. Carolin., 27, 1986, 605-629. | fulltext EuDML | fulltext mini-dml | MR | Zbl

[22] P. H. Rabinowitz, Variational methods for nonlinear eigenvalue problems. C.I.M.E., Varenna 1974, 1-56. | MR | Zbl

[23] R. C. Riddel, Eigenvalue problems for nonlinear elliptic variational inequalities. Nonlinear Anal. Th. Meth. Appl., 3 1979, 1-33. | Zbl

[24] C. Saccon, Some parabolic equations on nonconvex constraints. Boll. Un. Mat. Ital., B (7) 3, 1989, 369-385. | MR | Zbl

[25] C. Saccon, On the eigenvalues of a fourth order elliptic variational inequality with pointwise gradient constraint. Preprint Dip. Mat. Pisa, ottobre 1992.

[26] F. Schuricht, Minimax principle for eigenvalue variational inequalities in the nonsmooth case. Math. Nachr., 152, 1991, 121-143. | DOI | MR | Zbl

[27] F. Schuricht, Bifurcation from minimax solutions by variational inequalities. Math. Nachr., 154, 1991, 67-88. | DOI | MR | Zbl

[28] A. Szulkin, On a class of variational inequalities involving gradient operators. J. Math. Annal. Appl., 100, 1984, 486-499. | DOI | MR | Zbl

[29] A. Szulkin, On the solvability of a class of semilinear variational inequalities. Rend. Mat., (7) 4, 1984, 121-137. | MR | Zbl

[30] A. Szulkin, Posive solutions of variational inequalities: a degree theoretical approach. J. Differential Equations, 57, 1985, 90-111. | DOI | MR | Zbl