General construction of Banach-Grassmann algebras
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 3 (1992) no. 3, pp. 223-231.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We show that a free graded commutative Banach algebra over a (purely odd) Banach space \( E \) is a Banach-Grassmann algebra in the sense of Jadczyk and Pilch if and only if \( E \) is infinite-dimensional. Thus, a large amount of new examples of separable Banach-Grassmann algebras arise in addition to the only one example previously known due to A. Rogers.
Si mostra che un'algebra di Banach libera graduato-commutativa su uno spazio di Banach \( E \) puramente dispari è un'algebra di BanachGrassmann nel senso di Jadczyk e Pilch se e solo se \( E \) ha dimensione infinita. É quindi possibile ottenere un gran numero di nuovi esempi di algebre di Banach-Grassmann separabili, in aggiunta all'unico esempio precedentemente noto, dovuto ad A. Rogers.
@article{RLIN_1992_9_3_3_a7,
     author = {Pestov, Vladimir G.},
     title = {General construction of {Banach-Grassmann} algebras},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {223--231},
     publisher = {mathdoc},
     volume = {Ser. 9, 3},
     number = {3},
     year = {1992},
     zbl = {0745.46050},
     mrnumber = {1175751},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_3_a7/}
}
TY  - JOUR
AU  - Pestov, Vladimir G.
TI  - General construction of Banach-Grassmann algebras
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1992
SP  - 223
EP  - 231
VL  - 3
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_3_a7/
LA  - en
ID  - RLIN_1992_9_3_3_a7
ER  - 
%0 Journal Article
%A Pestov, Vladimir G.
%T General construction of Banach-Grassmann algebras
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1992
%P 223-231
%V 3
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_3_a7/
%G en
%F RLIN_1992_9_3_3_a7
Pestov, Vladimir G. General construction of Banach-Grassmann algebras. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 3 (1992) no. 3, pp. 223-231. http://geodesic.mathdoc.fr/item/RLIN_1992_9_3_3_a7/

[1] C. Bartocci - U. Bruzzo - D. Hernández Ruipérez, The geometry of supermanifolds. Kluwer Academic Publishers Group, Dordrecht 1991. | DOI | MR | Zbl

[2] Y. Kobayashi - Sh. Nagamachi, Usage of infinite-dimensional nuclear algebras in superanalysis. Lett. Math. Phys., 14, 1987, 15-23. | DOI | MR | Zbl

[3] V. S. Vladimirov - I. V. Volovich, Superanalysis I. Differential calculus. Theor. Math. Phys., 60, 1984, 317-335. | MR | Zbl

[4] A. Yu. Khrennikov, Functional superanalysis. Russian Math. Surveys, 43, 1988, 103-137. | DOI | MR | Zbl

[5] P. Bryant, DeWitt supermanifolds and infinite-dimensional ground rings. J. London Math. Soc., 39, 1989, 347-368. | DOI | MR | Zbl

[6] Y. Choquet-Bruhat, Graded Bundles and Supermanifolds. Monographs and Textbooks in Physical Sciences, Bibliopolis, Naples 1990. | MR | Zbl

[7] B. S. De Witt, Supermanifolds. Cambridge University Press, London 1984. | MR | Zbl

[8] F. A. Berezin, Introduction to superanalysis. D. Reidel Publ. Co., Dordrecht-Boston, MA, 1987. | MR | Zbl

[9] R. Arens, A generalization of normed rings. Pacif. J. Math., 2, 1952, 455-471. | fulltext mini-dml | MR | Zbl

[10] E. Michael, Locally multiplicatively-convex topological algebras. Mem. Amer. Math. Soc., 1952, 79 pp. | MR | Zbl

[11] V. Pestov, Even sectors of Lie superalgebras as locally convex Lie algebras. J. Math. Phys., 32, 1991, 24-32. | DOI | MR | Zbl

[12] V. Pestov, Interpreting superanalyticity in terms of convergent series. Class. Quantum Grav., 6, 1989, L145-L159. | MR | Zbl

[13] V. Pestov, Ground algebras for superanalysis. Rep. Math. Phys., 1991, to appear. | DOI | MR | Zbl

[14] A. Jadczyk - K. Pilch, Superspaces and supersymmetries. Commun. Math. Phys., 78, 1981, 373-390. | fulltext mini-dml | MR | Zbl

[15] U. Bruzzo - R. Cianci, On the structure of superfields in a field theory on a supermanifold. Lett. Math. Phys., 11, 1986, 21-26. | DOI | MR | Zbl

[16] U. Bruzzo, Geometry of rigid supersymmetry. Hadronic J., 9, 1986, 25-30. | MR | Zbl

[17] A. Rogers, A global theory of supermanifolds. J. Math. Phys., 21, 1980, 1352-1365. | DOI | MR | Zbl

[18] P. Teofilatto, Enlargeable graded Lie algebras of supersymmetry. J. Math. Phys., 28, 1987, 991-996. | DOI | MR | Zbl

[19] A. Jadczyk - K. Pilch, Classical limit of CAR and self-duality in the infinite-dimensional Grassmann algebra. In: B. JANCEWICZ - J. LUKIERSKI, Quantum Theory of Particles and Fields. World Scientific, Singapore 1983. | MR

[20] J. Lindenstrauss - K. Tzafriri, Classical Banach Spaces. Vol. 1, Springer Verlag, Berlin-Heidelberg-New York 1977. | Zbl

[21] H. H. Schaefer, Topological Vector Spaces. The Macmillan Co., New York-London 1966. | MR | Zbl

[22] A. Ya. Khelemskii, Banach and Polynormed Algebras. General Theory, Representations, Homology. Nauka, Moscow 1989 (in Russian). | MR | Zbl

[23] Yu. I. Manin, Gauge field theory and complex geometry. Springer Verlag, Berlin 1988. | MR | Zbl

[24] H. Cartan, Formes Différentielles. Hermann, Paris 1967. | MR | Zbl

[25] J. Kupsch, Measures for fermionic integration. Fortschr. Phys., 35, 1987, 415-436. | DOI | MR

[26] V. D. Ivashchuk, On annihilators in infinite-dimensional Grassmann-Banach algebras. Teor. i mat. fizika, 79, 1989, 30-40 (in Russian). | DOI | MR | Zbl

[27] A. V. Arkhangel'Skii, Classes of topological groups. Russian Math. Surveys, 36, 1981, 151-174. | MR | Zbl

[28] F. A. Berezin, The Method of Second Quantization. Academic Press, New York 1966. | MR | Zbl