On motions with bursting characters for Lagrangian mechanical systems with a scalar control. I. Existence of a wide class of Lagrangian systems capable of motions with bursting characters
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 2 (1991) no. 4, pp. 339-343.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In this Note (which will be followed by a second) we consider a Lagrangian system \( \Sigma \) (possibly without any Lagrangian function) referred to \( N + 1 \) coordinates \( q_{1} \cdots , q_{N} \), \( u \), with \( u \) to be used as a control, and precisely to add to \( \Sigma \) a frictionless constraint of the type \( u = u(t)\). Let \( \Sigma \)'s (frictionless) constraints be represented by the manifold \( V_{t} \) generally moving in Hertz's space. We also consider an instant \( d \) (to be used for certain limit discontinuity-properties), a point \( (\bar{q},\bar{u}) \) of \( V_{d} \), a value \( \bar{p} \) for \( \Sigma \)'s momentum conjugate to \( q \), and a continuous control \( v(\cdot) \) with \( v(d) = \bar{u} \). Furthermore zero is assumed not to equal a certain quantity determined by \( \Sigma \)'s kinetic energy and \( \Sigma \)'s applied forces, which forces are assumed to be at most linear in \( \dot{u} \). A purely mathematical work of Favretti allows us to quickly show that (i) \( v(\cdot) \) is the \( C^{0} \)-limit of a sequence \( u_{a}(\cdot) \) of continuous controls that have a jump character in some interval \(\left[ d, d+ \eta_{a} \right] \) and satisfy certain conditions including that both \( \eta_{a} \to 0^{+} \) and \( u_{a} (d+\eta_{a}) \to u_{a}(d)= v(d) \) as \( a \to \infty \). Furthermore on the basis of that work we quickly prove that (ii) for every choice of the above sequence \( u_{a} (\cdot) \), calling \( \Sigma_{a} \) the system \( \Sigma \) added with the frictionless constraint \( u = u_{a}(t) \) and assuming \( (\bar{q},\bar{p}) \) to be \( \Sigma_{a} \)'s state at \( t = d \), along \( \Sigma_{a} \)'s subsequent motion we have that \( q(t) \in B(\bar{q}, 1/a) \)\( \forall t \in \left[ d,d+\eta_{a} \right] \) and \( \dot{q}(d +\eta_{a})>a \). Thus, for values of \( a(\in \mathbb{N}) \) large enough, \( \Sigma_{a} \)'s motion has bursting characters.
In questa Nota (cui farà seguito una seconda) si considera un sistema Lagrangiano \( \Sigma \) (eventualmente privo di Lagrangiano) riferito a \( N + 1 \) coordinate \( q_{1} \cdots , q_{N} \), \( u \), con \( u \) da usarsi come controllo e precisamente per aggiungere a \( \Sigma \) un vincolo liscio del tipo \( u = u(t)\). I vincoli (lisci) di \( \Sigma \) siano rappresentati nello spazio di Hertz dalla varietà \( V_{t} \) (generalmente mobile). Si considera pure un istante \( d \) (da usarsi per certe «proprietà di discontinuità al limite»), un punto \( (\bar{q},\bar{u}) \) di \( V_{d} \), un valore \( \bar{p} \) per il momento di \( \Sigma \) coniugato a \( q \), e infine un controllo continuo \( v(\cdot) \) con \( v(d) = \bar{u} \). Inoltre si suppone \( \neq 0 \) una certa quantità determinata dall'energia cinetica e dalle forze attive di \( \Sigma \), queste forze essendo supposte al più lineari in \( \dot{u} \). Un lavoro puramente matematico di Favretti ci permette di mostrare rapidamente che (i) \( v(\cdot) \) è il limite in \( C^{0} \) di una sequenza \( u_{a}(\cdot) \) di controlli continui che hanno carattere di salto e salto \( j_{a} \)\( (= u_{a}(d+ \eta_{a}) — \bar{u}) \) in qualche intervallo \( [d,d+\eta_{a}] \) e inoltre soddisfano certe condizioni, tra le quali che si abbia: \( \eta_{a} \to 0^{+} \), \( j_{a} \to 0 \) e \( u_{a} (d+\eta_{a}) \to u_{a}(d)= v(d) \). Inoltre sulla base di quel lavoro dimostriamo rapidamente che (ii) per ogni scelta della suddetta sequenza \( u_{a} (\cdot) \), detto \( \Sigma_{a} \) il sistema \( \Sigma \) soggetto all'addizionale vincolo liscio \( u = u_{a}(t) \) e supposto che a \( t = d \)\( \Sigma_{a} \) sia nello stato \( (\bar{q},\bar{p}) \), lungo il susseguente moto di \( \Sigma_{a} \) si ha che \( q(t) \in B(\bar{q}, 1/a) \)\( \forall t \in \left[ d,d+\eta_{a} \right] \) e \( \dot{q}(d +\eta_{a})>a \). Così, per valori di \( a(\in \mathbb{N}) \) abbastanza alti, il moto di \( \Sigma_{a} \) ha carattere di scoppio.
@article{RLIN_1991_9_2_4_a6,
     author = {Bressan, Aldo and Favretti, Marco},
     title = {On motions with bursting characters for {Lagrangian} mechanical systems with a scalar control. {I.} {Existence} of a wide class of {Lagrangian} systems capable of motions with bursting characters},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {339--343},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {4},
     year = {1991},
     zbl = {0784.70025},
     mrnumber = {934514},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1991_9_2_4_a6/}
}
TY  - JOUR
AU  - Bressan, Aldo
AU  - Favretti, Marco
TI  - On motions with bursting characters for Lagrangian mechanical systems with a scalar control. I. Existence of a wide class of Lagrangian systems capable of motions with bursting characters
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1991
SP  - 339
EP  - 343
VL  - 2
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1991_9_2_4_a6/
LA  - en
ID  - RLIN_1991_9_2_4_a6
ER  - 
%0 Journal Article
%A Bressan, Aldo
%A Favretti, Marco
%T On motions with bursting characters for Lagrangian mechanical systems with a scalar control. I. Existence of a wide class of Lagrangian systems capable of motions with bursting characters
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1991
%P 339-343
%V 2
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1991_9_2_4_a6/
%G en
%F RLIN_1991_9_2_4_a6
Bressan, Aldo; Favretti, Marco. On motions with bursting characters for Lagrangian mechanical systems with a scalar control. I. Existence of a wide class of Lagrangian systems capable of motions with bursting characters. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 2 (1991) no. 4, pp. 339-343. http://geodesic.mathdoc.fr/item/RLIN_1991_9_2_4_a6/

[1] Alberto Bressan, On differential systems with impulsive controls. Sem. Mat. Univ. Padova, 78, 1987, 227-235. | fulltext mini-dml | MR

[2] Aldo Bressan, On the application of Control Theory to certain problems for Lagrangian systems, and hyper-impulsive motions for these. I. Some general mathematical considerations on controllizable parameters. Atti Acc. Lincei Rend. fis., s. 8, vol. 82, 1988, 91-105. | MR | Zbl

[3] Aldo Bressan, On control theory and its applications to certain problems for Lagrangian systems. On hyper-impulsive Applications motions for these. II. Some purely mathematical considerations for hyper-impulsive motions. Applications to Lagrangian systems. Atti Acc. Lincei Rend. fis., s. 8, vol. 82, 1988, 107-118. | MR | Zbl

[4] Aldo Bressan, On control theory and its applications to certain problems for Lagrangian systems. On hyper-impulsive motions for these. III. Strengthening of the characterizations performed in parts I and II, for Lagrangian systems. An invariance property. Atti Acc. Lincei Rend. fis., s. 8, vol. 82, 1988, 461-471. | MR | Zbl

[5] Aldo Bressan, Hyper-impulsive motions and controllizable coordinates for Lagrangian systems. Atti Acc. Lincei Mem. fis., s. 8, vol. 19, sez. 1, fasc. 7, 1989, 197-245. | MR

[6] M. Favretti, Essential character of the assumptions of a theorem of Aldo Bressan on the coordinates of a Lagrangian systems that are fit for jumps. Atti Istituto Veneto di Scienze Lettere ed Arti, to appear. | MR | Zbl

[7] M. Favretti, Some bounds for the solutions of certain families of Cauchy problems connected with bursting phenomena. Atti Istituto Veneto di Scienze Lettere ed Arti, to appear. | MR | Zbl