A variationally consistent generalized variable formulation of the elastoplastic rate problem
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 2 (1991) no. 2, pp. 177-190.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

The elastoplastic rate problem is formulated as an unconstrained saddle point problem which, in turn, is obtained by the Lagrange multiplier method from a kinematic minimum principle. The finite element discretization and the enforcement of the min-max conditions for the Lagrangean function lead to a set of algebraic governing relations (equilibrium, compatibility and constitutive law). It is shown how important properties of the continuum problem (like, e.g., symmetry, convexity, normality) carry over to the discrete problem if «generalized variables» are used in the discretization. A couple of dual kinematic and static minimum properties in generalized variables are finally derived.
Il problema elastoplastico per il continuo, in termini di velocità di variazione, viene formulato come un problema di punto sella non vincolato partendo da un principio di minimo cinematico e utilizzando il metodo dei moltiplicatori di Lagrange. L'imposizione delle condizioni di min-max per la funzione lagrangiana, discretizzata ad elementi finiti, porta ad un sistema algebrico di equazioni governanti (equilibrio, congruenza e legge costitutiva). Si dimostra come importanti proprietà del problema continuo (quali ad es. simmetria, convessità, normalità) si trasferiscano al problema discreto qualora si utilizzino variabili generalizzate per la discretizzazione. Infine, si formula una coppia di proprietà duali di minimo cinematico e statico.
@article{RLIN_1991_9_2_2_a10,
     author = {Comi, Claudia and Perego, Umberto},
     title = {A variationally consistent generalized variable formulation of the elastoplastic rate problem},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
     pages = {177--190},
     publisher = {mathdoc},
     volume = {Ser. 9, 2},
     number = {2},
     year = {1991},
     zbl = {0726.73098},
     mrnumber = {607503},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLIN_1991_9_2_2_a10/}
}
TY  - JOUR
AU  - Comi, Claudia
AU  - Perego, Umberto
TI  - A variationally consistent generalized variable formulation of the elastoplastic rate problem
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
PY  - 1991
SP  - 177
EP  - 190
VL  - 2
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLIN_1991_9_2_2_a10/
LA  - en
ID  - RLIN_1991_9_2_2_a10
ER  - 
%0 Journal Article
%A Comi, Claudia
%A Perego, Umberto
%T A variationally consistent generalized variable formulation of the elastoplastic rate problem
%J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni
%D 1991
%P 177-190
%V 2
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLIN_1991_9_2_2_a10/
%G en
%F RLIN_1991_9_2_2_a10
Comi, Claudia; Perego, Umberto. A variationally consistent generalized variable formulation of the elastoplastic rate problem. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 2 (1991) no. 2, pp. 177-190. http://geodesic.mathdoc.fr/item/RLIN_1991_9_2_2_a10/

[1] D. R. J. Owen - E. Hinton, Finite elements in plasticity. Pineridge Press, Swansea 1980. | MR | Zbl

[2] L. Corradi, On compatible finite element models for elastic plastic analysis. Meccanica, vol. 13, 1978, 133-150. | Zbl

[3] L. Corradi, A displacement formulation for the finite element elastic-plastic problem. Meccanica, vol. "18, 1983, 77-91. | Zbl

[4] W. Prager, The general theory of limit design. Proceedings of the 8th Intern. Conf. Appl. Mech. (Istanbul 1952), vol. 2, 1956, 65-72.

[5] G. Maier, On elastoplastic analysis by boundary elements. Mech. Res. Comm., vol. 10, 1983, 45-52. | Zbl

[6] G. Maier - A. Nappi, On bounding post-shakedown quantities by the boundary element method. Engineering Analysis, vol. 1, 1984, 223-229.

[7] C. Comi - G. Maier, Extremum problem convergence and stability theorems for the finite increment in elastic-plastic boundary element analysis. To appear. | Zbl

[8] C. Polizzotto, An energy approach to the boundary element method. Part II: elastic-plastic solids. Comp. Meth. Appl. Mech. Eng., vol. 69, 1988, 263-276. | DOI | MR | Zbl

[9] J. C. Simo - T. J. R. Hughes, On the variational formulation of assumed strain method. J. Appl. Mech., vol. 53, 1986, 51-54. | DOI | MR | Zbl

[10] J. C. Simo - J. G. Kennedy - R. L. Taylor, Complementary mixed finite element formulations for elastoplasticity. Comp. Meth. Appl. Mech. Eng., vol. 74, 1989, 177-206. | DOI | MR | Zbl

[11] C. Comi - G. Maier - U. Perego, Generalized variable finite element modelling and extremum theorems in stepwise holonomic elastoplasticity with internal variables. To appear. | DOI | MR | Zbl

[12] M. Capurso - G. Maier, Incremental elastoplastic analysis and quadratic optimization. Meccanica, vol. 2, 1970, 107-116. | Zbl

[13] B. Halphen - Q. S. Nguyen, Sur les matériaux standards généralisés. J. de Mécanique, vol. 14, 1975, 39-63. | MR | Zbl

[14] J. Lemaitre - J. L. Chaboche, Mécanique des matériaux solides. Dunod, Paris 1985.

[15] C. Comi - G. Maier, Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening. Eur. J. Mech., A/Solids, vol. 9, 1990, 563-585. | MR | Zbl