Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1991_9_2_2_a10, author = {Comi, Claudia and Perego, Umberto}, title = {A variationally consistent generalized variable formulation of the elastoplastic rate problem}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {177--190}, publisher = {mathdoc}, volume = {Ser. 9, 2}, number = {2}, year = {1991}, zbl = {0726.73098}, mrnumber = {607503}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1991_9_2_2_a10/} }
TY - JOUR AU - Comi, Claudia AU - Perego, Umberto TI - A variationally consistent generalized variable formulation of the elastoplastic rate problem JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1991 SP - 177 EP - 190 VL - 2 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1991_9_2_2_a10/ LA - en ID - RLIN_1991_9_2_2_a10 ER -
%0 Journal Article %A Comi, Claudia %A Perego, Umberto %T A variationally consistent generalized variable formulation of the elastoplastic rate problem %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1991 %P 177-190 %V 2 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1991_9_2_2_a10/ %G en %F RLIN_1991_9_2_2_a10
Comi, Claudia; Perego, Umberto. A variationally consistent generalized variable formulation of the elastoplastic rate problem. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 2 (1991) no. 2, pp. 177-190. http://geodesic.mathdoc.fr/item/RLIN_1991_9_2_2_a10/
[1] Finite elements in plasticity. Pineridge Press, Swansea 1980. | MR | Zbl
- ,[2] On compatible finite element models for elastic plastic analysis. Meccanica, vol. 13, 1978, 133-150. | Zbl
,[3] A displacement formulation for the finite element elastic-plastic problem. Meccanica, vol. "18, 1983, 77-91. | Zbl
,[4] The general theory of limit design. Proceedings of the 8th Intern. Conf. Appl. Mech. (Istanbul 1952), vol. 2, 1956, 65-72.
,[5] On elastoplastic analysis by boundary elements. Mech. Res. Comm., vol. 10, 1983, 45-52. | Zbl
,[6] On bounding post-shakedown quantities by the boundary element method. Engineering Analysis, vol. 1, 1984, 223-229.
- ,[7] Extremum problem convergence and stability theorems for the finite increment in elastic-plastic boundary element analysis. To appear. | Zbl
- ,[8] An energy approach to the boundary element method. Part II: elastic-plastic solids. Comp. Meth. Appl. Mech. Eng., vol. 69, 1988, 263-276. | DOI | MR | Zbl
,[9] On the variational formulation of assumed strain method. J. Appl. Mech., vol. 53, 1986, 51-54. | DOI | MR | Zbl
- ,[10] Complementary mixed finite element formulations for elastoplasticity. Comp. Meth. Appl. Mech. Eng., vol. 74, 1989, 177-206. | DOI | MR | Zbl
- - ,[11] Generalized variable finite element modelling and extremum theorems in stepwise holonomic elastoplasticity with internal variables. To appear. | DOI | MR | Zbl
- - ,[12] Incremental elastoplastic analysis and quadratic optimization. Meccanica, vol. 2, 1970, 107-116. | Zbl
- ,[13] Sur les matériaux standards généralisés. J. de Mécanique, vol. 14, 1975, 39-63. | MR | Zbl
- ,[14] Mécanique des matériaux solides. Dunod, Paris 1985.
- ,[15] Extremum theorem and convergence criterion for an iterative solution to the finite-step problem in elastoplasticity with mixed nonlinear hardening. Eur. J. Mech., A/Solids, vol. 9, 1990, 563-585. | MR | Zbl
- ,