Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLIN_1991_9_2_1_a1, author = {Benci, Vieri and Fortunato, Donato and Giannoni, Fabio}, title = {Some results on the existence of geodesics in static {Lorentz} manifolds with singular boundary}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni}, pages = {17--23}, publisher = {mathdoc}, volume = {Ser. 9, 2}, number = {1}, year = {1991}, zbl = {0737.53059}, mrnumber = {167940}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLIN_1991_9_2_1_a1/} }
TY - JOUR AU - Benci, Vieri AU - Fortunato, Donato AU - Giannoni, Fabio TI - Some results on the existence of geodesics in static Lorentz manifolds with singular boundary JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1991 SP - 17 EP - 23 VL - 2 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1991_9_2_1_a1/ LA - en ID - RLIN_1991_9_2_1_a1 ER -
%0 Journal Article %A Benci, Vieri %A Fortunato, Donato %A Giannoni, Fabio %T Some results on the existence of geodesics in static Lorentz manifolds with singular boundary %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1991 %P 17-23 %V 2 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1991_9_2_1_a1/ %G en %F RLIN_1991_9_2_1_a1
Benci, Vieri; Fortunato, Donato; Giannoni, Fabio. Some results on the existence of geodesics in static Lorentz manifolds with singular boundary. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 2 (1991) no. 1, pp. 17-23. http://geodesic.mathdoc.fr/item/RLIN_1991_9_2_1_a1/
[1] Essais de geometrie Riemanniene hyperbolique: applications to the relativité generale. Ann. Inst. Fourier, 132, 1963, 105-90. | fulltext mini-dml | MR | Zbl
,[2] Existence of geodesics for the Lorentz metric of a stationary gravitational field. Ann. Inst. H. Poincaré, Analyse non Lineaire, 7, 1990, 27-35. | fulltext mini-dml | MR | Zbl
- ,[3] On the existence of infinitely many geodesics on space-time manifolds. Adv. Math., to appear. | DOI | MR | Zbl
- ,[4] On the existence of multiple geodesics in static space-times. Ann. Inst. H. Poincaré, Analyse non Lineaire, to appear. | fulltext mini-dml | MR | Zbl
- - ,[5] On the existence of geodesics in Lorentz manifolds with singular boundary. Ist. Mat. Appl. Univ. Pisa, preprint. | fulltext mini-dml | Zbl
- - ,[6] The large scale structure of space-time. Cambridge Univ. Press, 1973. | MR | Zbl
- ,[7] Maximal extension of Schwarzschild metric. Phys. Rev., 119, 1960, 1743-1745. | MR | Zbl
,[8] Semi-Riemannian geometry with applications to relativity. Academic Press Inc., New York-London 1983. | MR | Zbl
,[9] Techniques of differential topology in relativity. Conf. Board Math. Sci., 7, S.I.A.M. Philadelphia 1972. | MR | Zbl
,[10] Nonlinear functional analysis. Gordon and Breach, New York 1969. | MR | Zbl
,[11] Global connectivity by time-like geodesics. Z. Natureforsch, 22a, 1970, 1356-1360. | Zbl
,[12] A Morse theory for geodesics on a Lorentz manifold. Topology, 14, 1975, 69-90. | MR | Zbl
,