A propagation theorem for a class of microfunctions
Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 1 (1990) no. 1, pp. 53-58
Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
Let \( A \) be a closed set of \( M \simeq \mathbb{R}^{n} \), whose conormai cones \( x + y^{*}_{x}(A) \), \( x \in A \), have locally empty intersection. We first show in §1 that \( \text{dist}(x,A) \), \( x \in M \setminus A \) is a \( C^{1} \) function. We then represent the n microfunctions of \( \mathcal{C}_{A|X} \), \( X \simeq \mathbb{C}^{n} \), using cohomology groups of \( \mathcal{O}_{X} \) of degree 1. By the results of § 1-3, we are able to prove in §4 that the sections of \( \mathcal{C}_{A|X}\large|_{\dot{\pi}^{-1}(x_{0})} \), \( x_{0} \in \partial A \), satisfy the principle of the analytic continuation in the complex integral manifolds of \( \{H(\phi_{i}^{C})\}_{i=1, \ldots, m} \), \( \{\phi_{i}\} \) being a base for the linear hull of \( \gamma^{*}_{x_{0}}(A) \) in \( T^{*}_{x_{0}}M \); in particular we get \( \Gamma_{A \times_{M} T^{*}_{M}X}(\mathcal{C}_{A|X})\large|_{\partial A \times_{M} \dot{T}^{*}_{M}X} = 0 \). When \( A \)is a half space with \( C^{\omega} \)-boundary, all of the above results werealready proved by Kataoka. Finally for a \( \mathcal{E}_{X} \)-module \( \mathcal{M} \)\( \mathcal{E}_{X} \)-module \( \mathcal{M} \)\( \mathcal{E}_{X} \)-module \( \mathcal{M} \)\( \mathcal{E}_{X} \)-module \( \mathcal{M} \)\( \mathcal{E}_{X} \)-module \( \mathcal{M} \)\( \mathcal{E}_{X} \)-module \( \mathcal{M} \)\( \mathcal{E}_{X} \)-module \( \mathcal{M} \)\( \mathcal{E}_{X} \)-module \( \mathcal{M} \)\( \mathcal{E}_{X} \)-module \( \mathcal{M} \)\( \mathcal{E}_{X} \)-module \( \mathcal{M} \) we show that \( \mathcal{H}\mathit{om}_{\mathcal{E}_{X}}(\mathcal{M}, \mathcal{C}_{A|X})_{p} = 0 \), when at least one conormal \( \theta \in \dot{\gamma}^{*}_{x_{0}}(A) \) is non-characteristic for \( \mathcal{M} \).
@article{RLIN_1990_9_1_1_a8,
author = {D'Agnolo, Andrea and Zampieri, Giuseppe},
title = {A propagation theorem for a class of microfunctions},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni},
pages = {53--58},
publisher = {mathdoc},
volume = {Ser. 9, 1},
number = {1},
year = {1990},
zbl = {0715.35009},
mrnumber = {MR1081826},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_1_a8/}
}
TY - JOUR AU - D'Agnolo, Andrea AU - Zampieri, Giuseppe TI - A propagation theorem for a class of microfunctions JO - Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni PY - 1990 SP - 53 EP - 58 VL - 1 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_1_a8/ LA - en ID - RLIN_1990_9_1_1_a8 ER -
%0 Journal Article %A D'Agnolo, Andrea %A Zampieri, Giuseppe %T A propagation theorem for a class of microfunctions %J Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni %D 1990 %P 53-58 %V 1 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_1_a8/ %G en %F RLIN_1990_9_1_1_a8
D'Agnolo, Andrea; Zampieri, Giuseppe. A propagation theorem for a class of microfunctions. Atti della Accademia nazionale dei Lincei. Rendiconti Lincei. Matematica e applicazioni, Série 9, Tome 1 (1990) no. 1, pp. 53-58. http://geodesic.mathdoc.fr/item/RLIN_1990_9_1_1_a8/