Uniform exponential energy decay of Euler-Bernoulli equations by suitable boundary feedback operators
Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 83 (1989) no. 1, pp. 121-128.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We study the uniform stabilization problem for the Euler-Bernoulli equation defined on a smooth bounded domain of any dimension with feedback dissipative operators in various boundary conditions.
Studiamo, al variare delle condizioni al contorno, il problema di stabilizzazione uniforme per l'equazione di Euler-Bernoulli con dissipazione definita su un dominio regolare limitato di dimensione qualunque.
@article{RLINA_1989_8_83_1_a19,
     author = {Bartolomeo, Jerry and Lasiecka, Irena and Triggiani, Roberto},
     title = {Uniform exponential energy decay of {Euler-Bernoulli} equations by suitable boundary feedback operators},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
     pages = {121--128},
     publisher = {mathdoc},
     volume = {Ser. 8, 83},
     number = {1},
     year = {1989},
     zbl = {0749.93047},
     mrnumber = {1142449},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a19/}
}
TY  - JOUR
AU  - Bartolomeo, Jerry
AU  - Lasiecka, Irena
AU  - Triggiani, Roberto
TI  - Uniform exponential energy decay of Euler-Bernoulli equations by suitable boundary feedback operators
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
PY  - 1989
SP  - 121
EP  - 128
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a19/
LA  - en
ID  - RLINA_1989_8_83_1_a19
ER  - 
%0 Journal Article
%A Bartolomeo, Jerry
%A Lasiecka, Irena
%A Triggiani, Roberto
%T Uniform exponential energy decay of Euler-Bernoulli equations by suitable boundary feedback operators
%J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
%D 1989
%P 121-128
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a19/
%G en
%F RLINA_1989_8_83_1_a19
Bartolomeo, Jerry; Lasiecka, Irena; Triggiani, Roberto. Uniform exponential energy decay of Euler-Bernoulli equations by suitable boundary feedback operators. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 83 (1989) no. 1, pp. 121-128. http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a19/

[1] J. Bartolomeo - R. Triggiani, 1988. Uniform stabilization of the Euler-Bernoulli equation with Dirichlet and Neumann boundary feedback. SIAM J. Mathematical Analysis, to appear. | MR | Zbl

[2] G. Chen, 1979. Energy decay estimates and exact controllability of the wave equation in a bounded domain. J. Math. Pures et Appl., (9), 58: 249-274. | MR

[3] G. Chen, 1981. A note on the boundary stabilization of the wave equation. SIAM J. Control, 19: 106-113. | DOI | MR | Zbl

[4] F. Flandoli - I. Lasiecka - R. Triggiani, Algebraic Riccati equations with non-smoothing observation arising in hyperbolic and Euler-Bernoulli equations. Annali di Matematica Pura e Applicata, to appear. | Zbl

[5] J.V. Kim - Y. Ranardy, 1987. Boundary control of the Timoshenkso beam. SIAM J. Control, 25: 1147- 1429. | DOI | MR

[6] J. Lagnese, 1988. Paper presented at International Workshop held in Vorau. Austria, July 10-16.

[7] J. Lagnese, 1989. Boundary stabilization of thin elastic plates, SIAM Studies in Applied Mathem. | DOI | MR

[8] J. Lagnese, 1987. Uniform boundary stabilization of homogeneous, isotropic plates. Lectures Notes in Control Science, 102, Springer-Verlag: 204-215; Proceedings of the 1986 Vorau Conference on Distributed Parameter Systems.

[9] J. Lagnese, A note on boundary stabilization of wave equations. SIAM J. Control, to appear. | DOI | MR | Zbl

[10] J. Lagnese, 1983. Decay of solutions of wave equations in a bounded region with boundary dissipation. J. Diff. Eqts., 50, (2): 163-182. | DOI | MR | Zbl

[11] J.L. Lions, 1988. Exact controllability, stabilization and perturbations. SIAM Review, March 1988, to appear in extended version by Masson.

[12] J.L. Lions, 1986. Un résultat de régularité (paper dedicated to S. Mizohata), Current Topics on Partial Differential Equations, Kinokuniya Company, Tokyo.

[13] J. Lagnese - J.L. Lions, 1988. Modelling, analysis and control of thin plates. Masson. | MR | Zbl

[14] I. Lasiecka - R. Triggiani, 1987. Exact controllability of the Euler-Bernoulli equation with $L^{2}(\Sigma)$-control only in the Dirichlet boundary conditions. Atti della Accademia Nazionale dei Lincei, Rendiconti Classe di Scienze fisiche, matematiche e naturali, vol. 81, Roma. | fulltext EuDML | Zbl

[15] I. Lasiecka - R. Triggiani, 1989. Exact controllability of the Euler-Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions: a non-conservative case. SIAM J. Control & Optimization, 27: 330-373. | Zbl

[16] I. Lasiecka - R. Triggiani, 1987. A direct approach to exact controllability for the wave equation with Neumann boundary control and to an Euler-Bernoulli equation. Proceedings 26th IEEE Conference, 529-534, Los Angeles.

[17] I. Lasiecka - R. Triggiani, 1987. Uniform exponential energy decay of the wave equation in a bounded region with $L_{2} (0,\infty; L_{2}(\Gamma)$-feedback control in the Dirichlet boundary conditions. J. Diff. Eqs., 66: 340-390. | Zbl

[18] I. Lasiecka - R. Triggiani, 1988. Regularity theory for a class of non-homogeneous Euler Bernoulli equations: a cosine operator approach. Bollettino Unione Matematica Italiana, (7), 3-B (1989): 199-228. | MR | Zbl

[19] I. Lasiecka - R. Triggiani, 1990. Exact controllability of the Euler-Bernoulli equation with boundary controls for displacement and moments. J. Mathem. Analysis & Applic., 146: 1-33. | DOI | MR | Zbl

[20] I. Lasiecka - R. Triggiani, 1989. Uniform exponential energy decay of the Euler-Bernoulli equation on a bounded region with boundary feedback acting on the bending moment. Dept. of Applied Mathem. Report, University of Virginia.

[21] R. Triggiani, 1987. Wave equation on a bounded domain with boundary dissipation: an operator approach. J. Mathem. Anal. & Applic., 37 (1989), 438-461; Operator Methods for Optimal Control Problems, Lectures Notes in Pure and Applied Mathematics, 108: 283-310 (LEE Ed.), Marcel Dekker; also in Recent Advances in Communication and Control Theory, honoring the sixtieth anniversary of A.V. Balakrishnan (R.E. KALMAN and G.I. MARCHUK, Eds.), 262-286, Optimization Software (New York, 1987).

[22] I. Lasiecka - R. Triggiani, 1989. Further results on exact controllability of the Euler-Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions, to appear. | DOI | MR | Zbl