Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLINA_1989_8_83_1_a19, author = {Bartolomeo, Jerry and Lasiecka, Irena and Triggiani, Roberto}, title = {Uniform exponential energy decay of {Euler-Bernoulli} equations by suitable boundary feedback operators}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali}, pages = {121--128}, publisher = {mathdoc}, volume = {Ser. 8, 83}, number = {1}, year = {1989}, zbl = {0749.93047}, mrnumber = {1142449}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a19/} }
TY - JOUR AU - Bartolomeo, Jerry AU - Lasiecka, Irena AU - Triggiani, Roberto TI - Uniform exponential energy decay of Euler-Bernoulli equations by suitable boundary feedback operators JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali PY - 1989 SP - 121 EP - 128 VL - 83 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a19/ LA - en ID - RLINA_1989_8_83_1_a19 ER -
%0 Journal Article %A Bartolomeo, Jerry %A Lasiecka, Irena %A Triggiani, Roberto %T Uniform exponential energy decay of Euler-Bernoulli equations by suitable boundary feedback operators %J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali %D 1989 %P 121-128 %V 83 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a19/ %G en %F RLINA_1989_8_83_1_a19
Bartolomeo, Jerry; Lasiecka, Irena; Triggiani, Roberto. Uniform exponential energy decay of Euler-Bernoulli equations by suitable boundary feedback operators. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 83 (1989) no. 1, pp. 121-128. http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a19/
[1] Uniform stabilization of the Euler-Bernoulli equation with Dirichlet and Neumann boundary feedback. SIAM J. Mathematical Analysis, to appear. | MR | Zbl
- , 1988.[2] Energy decay estimates and exact controllability of the wave equation in a bounded domain. J. Math. Pures et Appl., (9), 58: 249-274. | MR
, 1979.[3] A note on the boundary stabilization of the wave equation. SIAM J. Control, 19: 106-113. | DOI | MR | Zbl
, 1981.[4] Algebraic Riccati equations with non-smoothing observation arising in hyperbolic and Euler-Bernoulli equations. Annali di Matematica Pura e Applicata, to appear. | Zbl
- - ,[5] Boundary control of the Timoshenkso beam. SIAM J. Control, 25: 1147- 1429. | DOI | MR
- , 1987.[6] Paper presented at International Workshop held in Vorau. Austria, July 10-16.
, 1988.[7] Boundary stabilization of thin elastic plates, SIAM Studies in Applied Mathem. | DOI | MR
, 1989.[8] Uniform boundary stabilization of homogeneous, isotropic plates. Lectures Notes in Control Science, 102, Springer-Verlag: 204-215; Proceedings of the 1986 Vorau Conference on Distributed Parameter Systems.
, 1987.[9] A note on boundary stabilization of wave equations. SIAM J. Control, to appear. | DOI | MR | Zbl
,[10] Decay of solutions of wave equations in a bounded region with boundary dissipation. J. Diff. Eqts., 50, (2): 163-182. | DOI | MR | Zbl
, 1983.[11] Exact controllability, stabilization and perturbations. SIAM Review, March 1988, to appear in extended version by Masson.
, 1988.[12] Un résultat de régularité (paper dedicated to S. Mizohata), Current Topics on Partial Differential Equations, Kinokuniya Company, Tokyo.
, 1986.[13] Modelling, analysis and control of thin plates. Masson. | MR | Zbl
- , 1988.[14] Exact controllability of the Euler-Bernoulli equation with $L^{2}(\Sigma)$-control only in the Dirichlet boundary conditions. Atti della Accademia Nazionale dei Lincei, Rendiconti Classe di Scienze fisiche, matematiche e naturali, vol. 81, Roma. | fulltext EuDML | Zbl
- , 1987.[15] Exact controllability of the Euler-Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions: a non-conservative case. SIAM J. Control & Optimization, 27: 330-373. | Zbl
- , 1989.[16] A direct approach to exact controllability for the wave equation with Neumann boundary control and to an Euler-Bernoulli equation. Proceedings 26th IEEE Conference, 529-534, Los Angeles.
- , 1987.[17] Uniform exponential energy decay of the wave equation in a bounded region with $L_{2} (0,\infty; L_{2}(\Gamma)$-feedback control in the Dirichlet boundary conditions. J. Diff. Eqs., 66: 340-390. | Zbl
- , 1987.[18] Regularity theory for a class of non-homogeneous Euler Bernoulli equations: a cosine operator approach. Bollettino Unione Matematica Italiana, (7), 3-B (1989): 199-228. | MR | Zbl
- , 1988.[19] Exact controllability of the Euler-Bernoulli equation with boundary controls for displacement and moments. J. Mathem. Analysis & Applic., 146: 1-33. | DOI | MR | Zbl
- , 1990.[20] Uniform exponential energy decay of the Euler-Bernoulli equation on a bounded region with boundary feedback acting on the bending moment. Dept. of Applied Mathem. Report, University of Virginia.
- , 1989.[21] Wave equation on a bounded domain with boundary dissipation: an operator approach. J. Mathem. Anal. & Applic., 37 (1989), 438-461; Operator Methods for Optimal Control Problems, Lectures Notes in Pure and Applied Mathematics, 108: 283-310 (LEE Ed.), Marcel Dekker; also in Recent Advances in Communication and Control Theory, honoring the sixtieth anniversary of A.V. Balakrishnan (R.E. KALMAN and G.I. MARCHUK, Eds.), 262-286, Optimization Software (New York, 1987).
, 1987.[22] Further results on exact controllability of the Euler-Bernoulli equation with controls in the Dirichlet and Neumann boundary conditions, to appear. | DOI | MR | Zbl
- , 1989.