Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLINA_1989_8_83_1_a18, author = {Edmunds, David E. and Fortunato, Donato and Jannelli, Enrico}, title = {Fourth-order nonlinear elliptic equations with critical growth}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali}, pages = {115--119}, publisher = {mathdoc}, volume = {Ser. 8, 83}, number = {1}, year = {1989}, zbl = {0749.35012}, mrnumber = {1142448}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a18/} }
TY - JOUR AU - Edmunds, David E. AU - Fortunato, Donato AU - Jannelli, Enrico TI - Fourth-order nonlinear elliptic equations with critical growth JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali PY - 1989 SP - 115 EP - 119 VL - 83 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a18/ LA - en ID - RLINA_1989_8_83_1_a18 ER -
%0 Journal Article %A Edmunds, David E. %A Fortunato, Donato %A Jannelli, Enrico %T Fourth-order nonlinear elliptic equations with critical growth %J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali %D 1989 %P 115-119 %V 83 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a18/ %G en %F RLINA_1989_8_83_1_a18
Edmunds, David E.; Fortunato, Donato; Jannelli, Enrico. Fourth-order nonlinear elliptic equations with critical growth. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 83 (1989) no. 1, pp. 115-119. http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a18/
[1] Positive solutions of non-linear elliptic equations involving critical Sobolev exponent. Comm. Pure Appl. Math. 8: 437-477. | DOI | MR | Zbl
and , 1983.[2] An existence result for nonlinear elliptic problems involving critical Sobolev exponent. Ann. Inst. H. Poincaré, 2: 463-470. | fulltext EuDML | MR | Zbl
, and , 1985.[3] Bifurcation and multiplicity results for nonlinear elliptic problems involving critical Sobolev exponents. Ann. Inst. H. Poincaré, 1: 341-350. | fulltext EuDML | MR | Zbl
, and , 1984.[5] The Concentration-Compactness Principle in the Calculus of Variations. The limit case, Part 1. Revista Math. Iberoamericana, 1: 145-201. | fulltext EuDML | DOI | MR | Zbl
, 1985.[6] Isoperimetric Inequalities in Mathematical Physics. Princeton. | MR | Zbl
and , 1951.[7] A General Variational Identity. Indiana Univ. Math. J., 35: 681-703. | DOI | MR | Zbl
and , 1986.[8] Critical exponents and critical dimensions for polyharmonic operators, to appear. | MR | Zbl
and .