Sharp regularity theory for second order hyperbolic equations of Neumann type
Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 83 (1989) no. 1, pp. 109-113.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

This note provides sharp regularity results for general, time-independent, second order, hyperbolic equations with non-homogeneous data of Neumann type.
Si danno risultati di regolarità delle soluzioni del problema misto per equazioni a derivate parziali del secondo ordine di tipo iperbolico, con dato non omogeneo sulla frontiera di tipo Neumann.
@article{RLINA_1989_8_83_1_a17,
     author = {Lasiecka, Irena and Triggiani, Roberto},
     title = {Sharp regularity theory for second order hyperbolic equations of {Neumann} type},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
     pages = {109--113},
     publisher = {mathdoc},
     volume = {Ser. 8, 83},
     number = {1},
     year = {1989},
     zbl = {0767.35043},
     mrnumber = {1142447},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a17/}
}
TY  - JOUR
AU  - Lasiecka, Irena
AU  - Triggiani, Roberto
TI  - Sharp regularity theory for second order hyperbolic equations of Neumann type
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
PY  - 1989
SP  - 109
EP  - 113
VL  - 83
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a17/
LA  - en
ID  - RLINA_1989_8_83_1_a17
ER  - 
%0 Journal Article
%A Lasiecka, Irena
%A Triggiani, Roberto
%T Sharp regularity theory for second order hyperbolic equations of Neumann type
%J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
%D 1989
%P 109-113
%V 83
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a17/
%G en
%F RLINA_1989_8_83_1_a17
Lasiecka, Irena; Triggiani, Roberto. Sharp regularity theory for second order hyperbolic equations of Neumann type. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 83 (1989) no. 1, pp. 109-113. http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a17/

[1] Lions J.L., private communication, May 1984.

[2] Lions J.L. and Magenes E., 1972. Nonhomogeneous boundary value problems and applications. Vols. I, II, Springer-Verlag, Berlin-Heidelberg-New York. | Zbl

[3] Lasiecka I. and Triggiani R., 1981. A cosine operator approach to modelling $L_{2},T; L_{2}(\Gamma)$-boundary input hyperbolic equations. Applied Mathem. & Optimiz., 7: 35-93. | DOI | MR | Zbl

[4] Lasiecka I. and Triggiani R., 1983. Regularity of hyperbolic equations under $L_{2},T; L_{2}(\Gamma)$-boundary terms. Applied Mathem. & Optimiz., 10: 275-286. | DOI | MR | Zbl

[5] Lasiecka I. and Triggiani R., 1989. Trace regularity of the solutions of the wave equations with homogeneous Neumann boundary conditions. J.M.A.A., 141: 49-71. | DOI | MR | Zbl

[6] Lasiecka I., Lions J.L. and Triggiani R., 1986. Nonhomogeneous boundary value problems for second order hyperbolic operators. J. de Mathématiques Pures et Appliquées, 65: 149-192. | MR | Zbl

[7] Miyatake S., 1973. Mixed problems for hyperbolic equations of second order. J. Math. Kyoto University, 13: 435-487. | DOI | MR | Zbl

[8] Sakamoto R., 1970. Mixed problems for hyperbolic equations. I, II. J. Math. Kyoto University, 10-2: 343-373 and 10-3: 403-417. | DOI | MR | Zbl

[9] Symes W.W., 1983. A trace theorem for solutions of the wave equation and the remote determination of acoustic sources. Mathematical Methods in the Applied Sciences, 5: 131-152. | DOI | MR | Zbl

[10] Triggiani R., 1978. A cosine operator approach to modeling $L_{2},T; L_{2}(\Gamma)$-boundary input problems for hyperbolic systems. In «Proceedings 8th IFIP Conference on Optimization Techniques, University of Würzburg, West Germany 1977», Springer-Verlag, Lecture Notes CIS M6: 380-390.

[11] Lasiecka I. and Triggiani R., 1988. A lifting theorem for the time regularity of solutions to abstract equations with unbounded operators and applications to hyperbolic equations. Proceedings Americ. Mathem. Soc., 104: 745-755. | DOI | MR | Zbl

[12] Lasiecka I. and Triggiani R., Sharp regularity theory for second order hyperbolic equations of Neumann type. Part I: $L_{2}$ non-homodeneous data. Annali di Matematica Pura e Applicata, to appear. | Zbl

[13] Lasiecka I. and Triggiani R., 1989. Regularity theory of hyperbolic equations with non-homogeneous Neumann boundary conditions. Part II: General boundary data. J. Differ. Eqts., to appear. | DOI | MR | Zbl