Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLINA_1989_8_83_1_a17, author = {Lasiecka, Irena and Triggiani, Roberto}, title = {Sharp regularity theory for second order hyperbolic equations of {Neumann} type}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali}, pages = {109--113}, publisher = {mathdoc}, volume = {Ser. 8, 83}, number = {1}, year = {1989}, zbl = {0767.35043}, mrnumber = {1142447}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a17/} }
TY - JOUR AU - Lasiecka, Irena AU - Triggiani, Roberto TI - Sharp regularity theory for second order hyperbolic equations of Neumann type JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali PY - 1989 SP - 109 EP - 113 VL - 83 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a17/ LA - en ID - RLINA_1989_8_83_1_a17 ER -
%0 Journal Article %A Lasiecka, Irena %A Triggiani, Roberto %T Sharp regularity theory for second order hyperbolic equations of Neumann type %J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali %D 1989 %P 109-113 %V 83 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a17/ %G en %F RLINA_1989_8_83_1_a17
Lasiecka, Irena; Triggiani, Roberto. Sharp regularity theory for second order hyperbolic equations of Neumann type. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 83 (1989) no. 1, pp. 109-113. http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a17/
[1]
, private communication, May 1984.[2] Nonhomogeneous boundary value problems and applications. Vols. I, II, Springer-Verlag, Berlin-Heidelberg-New York. | Zbl
and , 1972.[3] A cosine operator approach to modelling $L_{2},T; L_{2}(\Gamma)$-boundary input hyperbolic equations. Applied Mathem. & Optimiz., 7: 35-93. | DOI | MR | Zbl
and , 1981.[4] Regularity of hyperbolic equations under $L_{2},T; L_{2}(\Gamma)$-boundary terms. Applied Mathem. & Optimiz., 10: 275-286. | DOI | MR | Zbl
and , 1983.[5] Trace regularity of the solutions of the wave equations with homogeneous Neumann boundary conditions. J.M.A.A., 141: 49-71. | DOI | MR | Zbl
and , 1989.[6] Nonhomogeneous boundary value problems for second order hyperbolic operators. J. de Mathématiques Pures et Appliquées, 65: 149-192. | MR | Zbl
, and , 1986.[7] Mixed problems for hyperbolic equations of second order. J. Math. Kyoto University, 13: 435-487. | DOI | MR | Zbl
, 1973.[8] Mixed problems for hyperbolic equations. I, II. J. Math. Kyoto University, 10-2: 343-373 and 10-3: 403-417. | DOI | MR | Zbl
, 1970.[9] A trace theorem for solutions of the wave equation and the remote determination of acoustic sources. Mathematical Methods in the Applied Sciences, 5: 131-152. | DOI | MR | Zbl
, 1983.[10] A cosine operator approach to modeling $L_{2},T; L_{2}(\Gamma)$-boundary input problems for hyperbolic systems. In «Proceedings 8th IFIP Conference on Optimization Techniques, University of Würzburg, West Germany 1977», Springer-Verlag, Lecture Notes CIS M6: 380-390.
, 1978.[11] A lifting theorem for the time regularity of solutions to abstract equations with unbounded operators and applications to hyperbolic equations. Proceedings Americ. Mathem. Soc., 104: 745-755. | DOI | MR | Zbl
and , 1988.[12] Sharp regularity theory for second order hyperbolic equations of Neumann type. Part I: $L_{2}$ non-homodeneous data. Annali di Matematica Pura e Applicata, to appear. | Zbl
and ,[13] Regularity theory of hyperbolic equations with non-homogeneous Neumann boundary conditions. Part II: General boundary data. J. Differ. Eqts., to appear. | DOI | MR | Zbl
and , 1989.