Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLINA_1989_8_83_1_a15, author = {Szufla, Stanis{\l}aw}, title = {On the {Aronszajn} property for integral equations in {Banach} space}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali}, pages = {93--99}, publisher = {mathdoc}, volume = {Ser. 8, 83}, number = {1}, year = {1989}, zbl = {0739.45013}, mrnumber = {1142445}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a15/} }
TY - JOUR AU - Szufla, Stanisław TI - On the Aronszajn property for integral equations in Banach space JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali PY - 1989 SP - 93 EP - 99 VL - 83 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a15/ LA - en ID - RLINA_1989_8_83_1_a15 ER -
%0 Journal Article %A Szufla, Stanisław %T On the Aronszajn property for integral equations in Banach space %J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali %D 1989 %P 93-99 %V 83 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a15/ %G en %F RLINA_1989_8_83_1_a15
Szufla, Stanisław. On the Aronszajn property for integral equations in Banach space. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 83 (1989) no. 1, pp. 93-99. http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a15/
[1] Le correspondant topologique de l'unicité dans la théorie des équations différentielles. Ann. of Math., 43: 730-738. | DOI | MR | Zbl
, 1942.[2] Topological degree and nonlinear mappings of analytical type in Banach space. J. Math. Anal. Appl., 26: 390-402. | DOI | MR | Zbl
and , 1969.[3] Ordinary differential equations in Banach spaces. Lect. Notes Math., 596: Springer Verlag. | MR | Zbl
, 1977.[4] Nonlinear differential equations in abstract spaces. Pergamon Press. | MR | Zbl
and , 1981.[5] Nonlinear operators and differential equations in Banach spaces. Wiley, New York. | MR
, 1976.[6] Boundary value problems for nonlinear ordinary differential equations of second order in Banach space. Nonlinear Analysis, 4: 985-999. | DOI | MR | Zbl
, 1980.[7] On some classes of nonlinear Volterra integral equations in Banach spaces. Bull. Acad. Polon. Sci. Math., 30: 239-250. | MR | Zbl
and , 1982.[8] Limit-compact and condensing operators. Russian Mah. Surveys, 27: 85-155. | MR | Zbl
, 1972.[9] On the existence of solutions of differential equations in Banach spaces. Bull. Acad. Polon. Sci. Math., 30: 507-515. | MR | Zbl
, 1982.