Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLINA_1989_8_83_1_a12, author = {Cannarsa, Piermarco and Da Prato, Giuseppe}, title = {The vanishing viscosity method in infinite dimensions}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali}, pages = {79--84}, publisher = {mathdoc}, volume = {Ser. 8, 83}, number = {1}, year = {1989}, zbl = {0735.49022}, mrnumber = {1142442}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a12/} }
TY - JOUR AU - Cannarsa, Piermarco AU - Da Prato, Giuseppe TI - The vanishing viscosity method in infinite dimensions JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali PY - 1989 SP - 79 EP - 84 VL - 83 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a12/ LA - en ID - RLINA_1989_8_83_1_a12 ER -
%0 Journal Article %A Cannarsa, Piermarco %A Da Prato, Giuseppe %T The vanishing viscosity method in infinite dimensions %J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali %D 1989 %P 79-84 %V 83 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a12/ %G en %F RLINA_1989_8_83_1_a12
Cannarsa, Piermarco; Da Prato, Giuseppe. The vanishing viscosity method in infinite dimensions. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 83 (1989) no. 1, pp. 79-84. http://geodesic.mathdoc.fr/item/RLINA_1989_8_83_1_a12/
[1] Solution of the Bellman equation associated with an infinite dimensional Stochastic control problem and synthesis of optimal control. SIAM J. Control Opt., 21, 4: 531-550. | DOI | MR | Zbl
and , 1983.[2] Some results on nonlinear optimal control problems and Hamilton-Jacobi equations in infinite dimensions. J. Funct. Anal., (to appear). | DOI | MR | Zbl
and[3] Nonlinear optimal control with infinite horizon for distributed parameter systems and stationary Hamilton-Jacobi equations. SIAM J. Control Opt., 27, 4: 861-875. | DOI | MR | Zbl
and , 1989.[4] Viscosity solutions of Hamilton-Jacobi equations. Trans. Amer. Math. Soc., 277: 183-186. | DOI | MR | Zbl
and , 1983.[5] Hamilton-Jacobi equations in infinite dimensions Part I. Uniqueness of Viscosity Solutions. J. Funct. Anal., 62: 379-396. | DOI | MR | Zbl
and , 1985.[6] Hamilton-Jacobi equations in infinite dimensions. Part II. Existence of Viscosity Solutions. J. Funct. Anal., 65: 368-405. | DOI | MR | Zbl
and , 1986.[7] Hamilton-Jacobi equations in infinte dimensions. Part III. J. Funct. Anal., 68: 368-405. | DOI | MR | Zbl
and , 1986.[8] Solutions de visconsitê pour les équations de Hamilton-Jacobi en dimension infinie intervenant dans le contrôle optimal des problèmes d'évolution. C.R. Acad. Sci. Paris, 305: 233-236. | MR
and , 1987.[9] Differential equations with functional derivatives and stochastic equations for generalized random processes. Dokl. Akad. Nauk SSSR, 166: 1035-1038. | MR
, 1966.[10] Some Results on Parabolic Evolution Equations with Infinitely Many Variables. J. Differential Equations, 68, 2: 281-297. | DOI | MR | Zbl
, 1987.[11] Some results on Bellman equation in Hilbert spaces and applications to infinite dimensional control problems. In «Stochastic Differential Systems, Filtering and Control», Lecture Notes in Control and Information Sciences n° 69, Proceedings of the IFIP-WG 7/1 Working Conference, Marseille-Luminy, France, March 12-17, 1984. MATIVIER M. and PARDOUX E. Editors: 270-280.
, 1985.[12] The Cauchy problem for a nonlinear first order partial differential equation. J. Differential Equations, 5: 515-530. | DOI | MR | Zbl
, 1969.[13] Potential theory in Hilbert space. J. Func. Anal., 1: 123-181. | MR | Zbl
, 1967.[14] Existence for the Dynamic Programming equations of control diffusion processes in Hilbert spaces. Nonlinear Anal. T.M.A, 9, n° 6: 619-629. | DOI | MR | Zbl
, 1985.[15] Generalized solutions of Hamilton-Jacobi equations. Pitman, Boston. | Zbl
, 1982.[16] A Fundamental Solution of the Parabolic Equations in Hilbert spaces. J. Funct. Analysis, 3: 85-114. | MR | Zbl
, 1969.