On Lagrangian systems with some coordinates as controls
Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 82 (1988) no. 4, pp. 685-695 Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica

Voir la notice de l'article

Let $\Sigma$ be a constrained mechanical system locally referred to state coordinates $(q^{1},...,q^{N}, \gamma^{1},...,\gamma^{M})$. Let $(\tilde{\gamma}^{1}...\tilde{\gamma}^{M})(\cdot)$ be an assigned trajectory for the coordinates $\gamma^{\alpha}$ and let $u(\cdot)$ be a scalar function of the time, to be thought as a control. In [4] one considers the control system $\Sigma_{\hat{\gamma}}$, which is parametrized by the coordinates $(q^{1},...,q^{N})$ and is obtained from $\Sigma$ by adding the time-dependent, holonomic constraints $\gamma^{\alpha} = \hat{\gamma}^{\alpha}(t) := \tilde{\gamma}^{\alpha} (u(t))$. More generally, one can consider a vector-valued control $u(\cdot) = (u^{1},..., u^{M})(\cdot)$ which is directly identified with $\hat{\gamma}(\cdot) = (\hat{\gamma}^{1},..., \hat{\gamma}^{M})(\cdot)$. If one denotes the momenta conjugate to the coordinates $q^{i}$ by $p_{i}$, $i= 1,...,N$, it is physically interesting to examine the continuity properties of the input-output map $\phi : u(\cdot) \rightarrow (q^{i} ,p_{i})(\cdot)$ associated with the dynamical equations of $\Sigma_{\hat{\gamma}}$ with respect to e.g. the $C^{0}$ topologies on the spaces of the controls $u(\cdot)$ and of the solutions $(q^{i},p_{i})(\cdot)$. Furthermore, in the theory of hyperimpulsive motions (see [4]), even discontinuous control are implemented. Then it is crucial to investigate the continuity of $\phi$ also with respect to topologies that are weaker than the $C^{0}$ one. In order that the input-output map $\phi$ exhibits such continuity properties, the right-hand sides of the dynamical equation for $\Sigma_{\hat{\gamma}}$ have to be affine in the derivatives $\frac{d \hat{\gamma}^{1}} {dt},...,\frac{d\hat{\gamma}^{M}} {dt}$. If this is the case, the system of coordinates $(q^{i} ,\gamma^{\alpha})$ is said to be $M$-fit (for linearity). In this note we show that, in the case of forces which depend linearly on the velocity of $\Sigma$, the coordinate system $q^{i} ,\gamma^{\alpha})$ is $M$-fit if and only if certain coefficients in the expression of the kinetic energy are independent of the $q^{i}$. Moreover, if the forces are positional, for each $1$-fit coordinate system $(q^{\prime i} ,y^{\prime})$ there exists a reparametrization $(q^{j} ,\gamma)$ such that $\frac{\partial\gamma}{\partial q^{\prime i}} = 0$ holds for every $i = 1,...,N$ and the coordinates $(q^{i} ,\gamma)$ are locally geodesic.
@article{RLINA_1988_8_82_4_a8,
     author = {Rampazzo, Franco},
     title = {On {Lagrangian} systems with some coordinates as controls},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
     pages = {685--695},
     year = {1988},
     volume = {Ser. 8, 82},
     number = {4},
     zbl = {0758.70013},
     mrnumber = {1139816},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLINA_1988_8_82_4_a8/}
}
TY  - JOUR
AU  - Rampazzo, Franco
TI  - On Lagrangian systems with some coordinates as controls
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
PY  - 1988
SP  - 685
EP  - 695
VL  - 82
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/RLINA_1988_8_82_4_a8/
LA  - en
ID  - RLINA_1988_8_82_4_a8
ER  - 
%0 Journal Article
%A Rampazzo, Franco
%T On Lagrangian systems with some coordinates as controls
%J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
%D 1988
%P 685-695
%V 82
%N 4
%U http://geodesic.mathdoc.fr/item/RLINA_1988_8_82_4_a8/
%G en
%F RLINA_1988_8_82_4_a8
Rampazzo, Franco. On Lagrangian systems with some coordinates as controls. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 82 (1988) no. 4, pp. 685-695. http://geodesic.mathdoc.fr/item/RLINA_1988_8_82_4_a8/

[1] V. Arnold (1980) - Equazioni differenziali ordinarie, MIR, Moscow.

[2] A. Bressan (1987) - On differential systems with impulsive controls, Rend. Sem.. Mat. Un. Padova, 78, 227-236. | fulltext EuDML | fulltext mini-dml | MR

[3] A. Bressan and F. Rampazzo (1988) - On differential systems with vector-valued impulsive control, Boll. Un. Mat. Ital. B, 3, 641-656. | MR | Zbl

[4] A. Bressan (1990) - Hyperimpulsive motions and controllizahle coordinates for Lagrangian systems, To appear on Atti Accad. Naz. Lincei, Rend. Cl. Sc. Fis. Mat. Natur.

[5] A. Bressan (1990) - On some control problems concerning the ski and the swing, To appear. | MR

[6] A. Bressan (1990) - On some recent results in control theory, for their applications to Lagrangian systems, To appear on Atti Accad. Naz. Lincei, Rend. Cl. Sc. Fis. Mat. Natur. | MR

[7] A. Bressan (1988) - On the applications of control theory to certain problems for Lagrangian systems, and hyperimpulsive motions for these. I and II, Atti Accad. Naz. Lincei, Rend. Cl. Sc. Fis. Mat. Nat. 82-1, 91-105 and 107-118. | Zbl

[8] H.J. Sussmann (1978) - On the gap between deterministic and stochastic ordinary differential equations, Ann. of probability, 6(1978), 19-41. | fulltext mini-dml | MR | Zbl