On control theory and its applications to certain problems for Lagrangian systems. On hyper-impulsive motions for these. III. Strengthening of the characterizations performed in parts I and II, for Lagrangian systems. An invariance property.
Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 82 (1988) no. 3, pp. 461-471.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

In [1] I and II various equivalence theorems are proved; e.g. an ODE $(\mathcal{E}) \dot{z} = F(t,z,u,\dot{u}) \, (\in \mathbb{R}^{m})$ with a scalar control $u = u(\cdot)$ is linear w.r.t. $\dot{u}$ iff $(\alpha)$ its solution $z(u,\cdot)$ with given initial conditions (chosen arbitrarily) is continuous w.r.t. $u$ in a certain sense, or iff $(\beta)$$z(u, \cdot)$ satisfies certain conditions by which $1^{st}$-order discontinuities of $u$ and $\dot{u}$ can be treated satisfactorily. In the case when, for $z = (q, p)$ equation $(\mathcal{E})$ is a semi-Hamiltonian system, equivalent to a system of Lagrangian equations of a general type, the importance or compulsory character in many situations, of the conditions hinted at in $(\alpha)$ and $(\beta)$, have received some intuitive justifications in [1] II. In the present paper some of these are replaced by theorems and thus the importance of the above linearity is strengthened. E.g. this linearity is shown, roughly speaking, to follow from the continuity (in the afore-mentioned sense) of the function $u \vdash q ( u , \cdot)$ alone. In the above semi-Hamiltonian case, the linearity of equation $(\mathcal{E})$ w.r.t. $u$ is also proved to be invariant under certain transformations of Lagrangian co-ordinates.
In [1] I and II si dimostrano vari teoremi di equivalenza; per es., un'equazione differenziale ordinaria $(\mathcal{E}) \dot{z} = F(t,z,u,\dot{u}) \, (\in \mathbb{R}^{m})$ contenente un controllo scalare $u = u(\cdot)$, è lineare in $\dot{u}$ se e solo se $(\alpha)$ la soluzione $z(u,\cdot)$ di $(\mathcal{E})$ con date condizioni iniziali (scelte ad arbitrio) è continua rispetto ad $u$ in un certo senso, oppure se e solo se $(\beta)$$z(u, \cdot)$ verifica certe condizioni che permettono di trattare soddisfacentemente i casi di discontinuità di prima specie per $u$ e $\dot{u}$. Nel caso che per $z = (q, p)$ la $(\mathcal{E})$ sia un sistema semi-Hamiltoniano, equivalente ad un sistema di equazioni di Lagrange di tipo generale, l'importanza e magari l'irrinunciabilità in molte situazioni, delle condizioni accennate in $(\alpha)$ e $(\beta)$ è motivata, in [1] II, con considerazioni intuitive. Nel presente lavoro, alcune di esse sono sostituite con teoremi rafforzando così l'importanza della su accennata linearità. Per es., grosso modo, si dimostra che questa segue dalla continuità della sola $u \vdash q ( u , \cdot)$ nel senso su accennato. Nel caso semi-Hamiltoniano suddetto, si dimostra pure un teorema di invarianza della linearità della $(\mathcal{E})$ in $\dot{u}$, rispetto a certe trasformazioni di co-ordinate Lagrangiane.
@article{RLINA_1988_8_82_3_a8,
     author = {Bressan, Aldo},
     title = {On control theory and its applications to certain problems for {Lagrangian} systems. {On} hyper-impulsive motions for these. {III.} {Strengthening} of the characterizations performed in parts {I} and {II,} for {Lagrangian} systems. {An} invariance property.},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
     pages = {461--471},
     publisher = {mathdoc},
     volume = {Ser. 8, 82},
     number = {3},
     year = {1988},
     zbl = {0721.70021},
     mrnumber = {1151699},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLINA_1988_8_82_3_a8/}
}
TY  - JOUR
AU  - Bressan, Aldo
TI  - On control theory and its applications to certain problems for Lagrangian systems. On hyper-impulsive motions for these. III. Strengthening of the characterizations performed in parts I and II, for Lagrangian systems. An invariance property.
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
PY  - 1988
SP  - 461
EP  - 471
VL  - 82
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLINA_1988_8_82_3_a8/
LA  - en
ID  - RLINA_1988_8_82_3_a8
ER  - 
%0 Journal Article
%A Bressan, Aldo
%T On control theory and its applications to certain problems for Lagrangian systems. On hyper-impulsive motions for these. III. Strengthening of the characterizations performed in parts I and II, for Lagrangian systems. An invariance property.
%J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
%D 1988
%P 461-471
%V 82
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLINA_1988_8_82_3_a8/
%G en
%F RLINA_1988_8_82_3_a8
Bressan, Aldo. On control theory and its applications to certain problems for Lagrangian systems. On hyper-impulsive motions for these. III. Strengthening of the characterizations performed in parts I and II, for Lagrangian systems. An invariance property.. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 82 (1988) no. 3, pp. 461-471. http://geodesic.mathdoc.fr/item/RLINA_1988_8_82_3_a8/

[1] Bressan A.: On control theory and its applications to certain problems for Lagrangian systems. On hyper-impulsive motions of these. I Some general mathematical considerations on controllizable parameters. II Some purely mathematical considerations for hyper-impulsive motions. Applications to Lagrangian systems. Atti dell'Accad. Naz. dei Lincei. | Zbl

[2] Bressan A.: Hyper-impulsive motions and controllizable co-ordinates for Lagrangian systems, being printed as a memoir on Atti Accad. Lincei.