On the Gauss-Lucas'lemma in positive characteristic
Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 82 (1988) no. 2, pp. 211-216
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
If $f(x)$ is a polynomial with coefficients in the field of complex numbers, of positive degree $n$, then $f(x)$ has at least one root a with the following property: if $\mu \le k \le n$, where $\mu$ is the multiplicity of $\alpha$, then $f^{(k)} (\alpha) \ne 0$ (such a root is said to be a "free" root of $f(x)$). This is a consequence of the so-called Gauss-Lucas'lemma. One could conjecture that this property remains true for polynomials (of degree $n$) with coefficients in a field of positive characteristic $p > n$ (Sudbery's Conjecture). In this paper it is shown that, on the contrary, if $n > p > 2n—2$ then there exist polynomials which do not have free roots at all. Then one replaces Sudbery's conjecture by supposing that the required property is true for simple polynomials.
@article{RLINA_1988_8_82_2_a1,
author = {Bartocci, Umberto and Vipera, Maria Cristina},
title = {On the {Gauss-Lucas'lemma} in positive characteristic},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
pages = {211--216},
year = {1988},
volume = {Ser. 8, 82},
number = {2},
zbl = {0723.12003},
mrnumber = {1152642},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLINA_1988_8_82_2_a1/}
}
TY - JOUR AU - Bartocci, Umberto AU - Vipera, Maria Cristina TI - On the Gauss-Lucas'lemma in positive characteristic JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali PY - 1988 SP - 211 EP - 216 VL - 82 IS - 2 UR - http://geodesic.mathdoc.fr/item/RLINA_1988_8_82_2_a1/ LA - en ID - RLINA_1988_8_82_2_a1 ER -
%0 Journal Article %A Bartocci, Umberto %A Vipera, Maria Cristina %T On the Gauss-Lucas'lemma in positive characteristic %J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali %D 1988 %P 211-216 %V 82 %N 2 %U http://geodesic.mathdoc.fr/item/RLINA_1988_8_82_2_a1/ %G en %F RLINA_1988_8_82_2_a1
Bartocci, Umberto; Vipera, Maria Cristina. On the Gauss-Lucas'lemma in positive characteristic. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 82 (1988) no. 2, pp. 211-216. http://geodesic.mathdoc.fr/item/RLINA_1988_8_82_2_a1/
[1] , Complex Analysis, Mc Graw and Hill, 1966. | MR | Zbl
[2] , Su di una congettura di Sudbery, «Rend. Acc. Naz. Lincei», VIII, 56, 1974. | MR | Zbl
[3] and , An Introduction to the Theory of Numbers, Oxford, 1960. | Jbk 64.0093.03 | MR | Zbl
[4] , Relations between the zeros of a rational integral function and its derivate, «Ann. of Math.», 15, 1913. | Jbk 45.0167.01
[5] , Analytic Function Theory, Vol. I, Chelsea P.C., 1973. | Zbl
[6] , Relations between the roots of a rational integral function and its derivatives, «Ann. of Math.», 16, 1915. | Jbk 45.0167.02
[7] , The number of distinct roots of a polynomial and its derivatives, «Bull. London Math. Soc.», 5, 1973. | MR | Zbl