On the Gauss-Lucas'lemma in positive characteristic
Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 82 (1988) no. 2, pp. 211-216 Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica

Voir la notice de l'article

If $f(x)$ is a polynomial with coefficients in the field of complex numbers, of positive degree $n$, then $f(x)$ has at least one root a with the following property: if $\mu \le k \le n$, where $\mu$ is the multiplicity of $\alpha$, then $f^{(k)} (\alpha) \ne 0$ (such a root is said to be a "free" root of $f(x)$). This is a consequence of the so-called Gauss-Lucas'lemma. One could conjecture that this property remains true for polynomials (of degree $n$) with coefficients in a field of positive characteristic $p > n$ (Sudbery's Conjecture). In this paper it is shown that, on the contrary, if $n > p > 2n—2$ then there exist polynomials which do not have free roots at all. Then one replaces Sudbery's conjecture by supposing that the required property is true for simple polynomials.
@article{RLINA_1988_8_82_2_a1,
     author = {Bartocci, Umberto and Vipera, Maria Cristina},
     title = {On the {Gauss-Lucas'lemma} in positive characteristic},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
     pages = {211--216},
     year = {1988},
     volume = {Ser. 8, 82},
     number = {2},
     zbl = {0723.12003},
     mrnumber = {1152642},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLINA_1988_8_82_2_a1/}
}
TY  - JOUR
AU  - Bartocci, Umberto
AU  - Vipera, Maria Cristina
TI  - On the Gauss-Lucas'lemma in positive characteristic
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
PY  - 1988
SP  - 211
EP  - 216
VL  - 82
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/RLINA_1988_8_82_2_a1/
LA  - en
ID  - RLINA_1988_8_82_2_a1
ER  - 
%0 Journal Article
%A Bartocci, Umberto
%A Vipera, Maria Cristina
%T On the Gauss-Lucas'lemma in positive characteristic
%J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
%D 1988
%P 211-216
%V 82
%N 2
%U http://geodesic.mathdoc.fr/item/RLINA_1988_8_82_2_a1/
%G en
%F RLINA_1988_8_82_2_a1
Bartocci, Umberto; Vipera, Maria Cristina. On the Gauss-Lucas'lemma in positive characteristic. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 82 (1988) no. 2, pp. 211-216. http://geodesic.mathdoc.fr/item/RLINA_1988_8_82_2_a1/

[1] Ahlfors L.V., Complex Analysis, Mc Graw and Hill, 1966. | MR | Zbl

[2] Bartocci U., Su di una congettura di Sudbery, «Rend. Acc. Naz. Lincei», VIII, 56, 1974. | MR | Zbl

[3] Hardy G.H. and Wright E.M., An Introduction to the Theory of Numbers, Oxford, 1960. | Jbk 64.0093.03 | MR | Zbl

[4] Hayashi T., Relations between the zeros of a rational integral function and its derivate, «Ann. of Math.», 15, 1913. | Jbk 45.0167.01

[5] Hills E., Analytic Function Theory, Vol. I, Chelsea P.C., 1973. | Zbl

[6] Irwin F., Relations between the roots of a rational integral function and its derivatives, «Ann. of Math.», 16, 1915. | Jbk 45.0167.02

[7] Sudbery A., The number of distinct roots of a polynomial and its derivatives, «Bull. London Math. Soc.», 5, 1973. | MR | Zbl