On the canonical development of Parseval formulas for singular differential operators
Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 72 (1982) no. 2, pp. 65-70.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Per funzioni opportune $f,g$ si ottiene una formula di Parseval $\langle \mathbf{R}^{Q}, \mathcal{Q}f \, \mathcal{Q}g \rangle_{\lambda} = \langle \Delta_{Q}^{-1/2}f,\Delta_{Q}^{-1/2}g \rangle$ per operatori differenziali singolari di tipo dell'operatore radiale di Laplace-Beltrami. $\mathbf{R}^{Q}$ è una funzione spettrale generalizzata di tipo Marčenko e può essere rappresentata per mezzo di un certo nucleo della trasmutazione.
@article{RLINA_1982_8_72_2_a0,
     author = {Carroll, Robert W.},
     title = {On the canonical development of {Parseval} formulas for singular differential operators},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
     pages = {65--70},
     publisher = {mathdoc},
     volume = {Ser. 8, 72},
     number = {2},
     year = {1982},
     zbl = {0584.47052},
     mrnumber = {0728254},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLINA_1982_8_72_2_a0/}
}
TY  - JOUR
AU  - Carroll, Robert W.
TI  - On the canonical development of Parseval formulas for singular differential operators
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
PY  - 1982
SP  - 65
EP  - 70
VL  - 72
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLINA_1982_8_72_2_a0/
LA  - en
ID  - RLINA_1982_8_72_2_a0
ER  - 
%0 Journal Article
%A Carroll, Robert W.
%T On the canonical development of Parseval formulas for singular differential operators
%J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
%D 1982
%P 65-70
%V 72
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLINA_1982_8_72_2_a0/
%G en
%F RLINA_1982_8_72_2_a0
Carroll, Robert W. On the canonical development of Parseval formulas for singular differential operators. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 72 (1982) no. 2, pp. 65-70. http://geodesic.mathdoc.fr/item/RLINA_1982_8_72_2_a0/

[1] R. Carroll (1979) - Transmutation and operator differential equations, «Notas de Matematica», 67, North-Holland, Amsterdam. | Zbl

[2] R. Carroll (1979) - Transmutation, Parseval formulas, and generalized spectral functions, «Notices Amer. Math. Soc.», Aug., A434 - Transmutation, generalized translation, and transform theory, I and II, Osaka Jour. Math., to appear.

[3] R. Carroll (1979) - Some remarks on transmutation, «Applicable Anal.», 9, 291-294. | Zbl

[4] R. Carroll - Transmutation, scattering theory, and special functions, North-Holland, Amsterdam, 1982.

[5] R. Carroll (1981) - Remarks on the Gelfand-Levitan and Marčenko equations, «Applicable Anal.», 7, 153-157. | Zbl

[6] R. Carroll - The Gelfand-Levitan and Marčenko equations via transmutation, «Rocky Mount. Jour. Math.», 12 (1982), 393-427.

[7] R. Carroll - Some remarks on the generalized Gelfand-Levitan equation, «Jour. Math. Anal. Appl.», to appear.

[8] R. Carroll (1981) - A survey of some recent results in transmutation, «Spectral Theory of Differential Operators», North-Holland, pp. 81-92.

[9] R. Carroll - Elliptic transmutation, I, «Proc. Royal Soc.» Edinburgh, 91A (1982), 315-334.

[10] R. Carroll (1981) - Some remarks on singular pseudodifferential operators, «Comm. Partial Diff. Eqs.», 6 (12), 1907-1927.

[11] R. Carroll - Some inversion theorems of Fourier type, «Rev. Roumaine Math. Pures Appl.», to appear.

[12] R. Carroll - On the characterization of transmutations, «Anais Acad. Brasil. Ciencias», 54 (1982), 271-280.

[13] R. Carroll and J. Gilbert (1981) - Scattering techniques in transmutation and some connection formulas for special functions, «Proc. Japan Acad.», 57, 34-37. | Zbl

[14] R. Carroll and J. Gilbert (1981) - Remarks on transmutation, scattering theory, and special functions, «Math Annalen», 258, 39-54. | fulltext EuDML | DOI | MR | Zbl

[15] R. Carroll and F. Santosa (1981) - Résolution d'un problème inverse qui détermine complètement les données géophysiques, «C. R. Acad. Sci. Paris», 292, 23-26. | Zbl

[16] R. Carroll and F. Santosa (1981) - Scattering techniques for a one dimensional inverse problem in geophysics, «Math. Methods Appl. Sci.», 3, 145-171. | Zbl

[17] H. Chebli (1979) - Théorème de Paley-Wiener associé à un opérateur différentiel singulier sur $(0,\infty)$, «Jour. Math. Pures Appl.», 58, 1-19. | fulltext EuDML | Zbl

[18] M. Flensted-Jensen (1972) - Paley-Wiener type theorems for a differential operator connected with symmetric spaces, «Ark Math.», 10, 143-162. | Zbl

[19] M. Gasymov (1975) - The expansion in eigenfunctions for a nonselfadjoint second order differential operator with a singularity at zero. «Trudy Let. Šk. Spekt. Teorii Oper.»..., Izd. Aim, Baku, pp. 20-45.

[20] T. Koornwinder (1975) - A new proof of a Paley-Wiener type theorem for the Jacobi transform, «Ark. Mat.», 13, 145-159. | Zbl

[21] B. Levitan (1973) - The theory of generalized translation operators, «Izd. Nauka», Moscow.

[22] J. Lions (1956) - Opérateurs de Delsarte et problèmes mixtes, «Bull. Soc. Math. France», 84, 9-95. | fulltext EuDML | Zbl

[23] V. Marcenko (1977) - Sturm-Liouville operators and their applications, «Izd. Nauk». Dumka, Kiev.

[24] J. Siersma (1979) - On a class of singular Cauchy problems, «Thesis», Groningen.

[25] K. Trimeche (1981) - Transformation intégrale de Weyl et théorème de Paley-Wiener associés à un opérateur différentiel singulier sur $(0,\infty)$, «Jour. Math. Pures Appl.», 60, 51-98. | Zbl