@article{RLINA_1979_8_67_5_a2,
author = {Kandil, M.A.},
title = {Convergence of {Fourier} coefficients' series for vector valued functions},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
pages = {289--294},
year = {1979},
volume = {Ser. 8, 67},
number = {5},
zbl = {0432.42008},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLINA_1979_8_67_5_a2/}
}
TY - JOUR AU - Kandil, M.A. TI - Convergence of Fourier coefficients' series for vector valued functions JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali PY - 1979 SP - 289 EP - 294 VL - 67 IS - 5 UR - http://geodesic.mathdoc.fr/item/RLINA_1979_8_67_5_a2/ LA - en ID - RLINA_1979_8_67_5_a2 ER -
%0 Journal Article %A Kandil, M.A. %T Convergence of Fourier coefficients' series for vector valued functions %J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali %D 1979 %P 289-294 %V 67 %N 5 %U http://geodesic.mathdoc.fr/item/RLINA_1979_8_67_5_a2/ %G en %F RLINA_1979_8_67_5_a2
Kandil, M.A. Convergence of Fourier coefficients' series for vector valued functions. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 67 (1979) no. 5, pp. 289-294. http://geodesic.mathdoc.fr/item/RLINA_1979_8_67_5_a2/
[1] (1964) - Trigometric series, Fizmatgiz, Moscow, 1961; English transl., Macmillan. New York; Pergamon Press, Oxford, MR 23, 1347.
[2] and (1974) - Functional analysis and Semigroups, «Amer. Math. Soc. Publ.», 31, rev. ed. Amer. Math. Soc., Providence R.I.
[3] (1967) - Poisson's summation formulae for vector valued functions, «Vestnik. Moscow State University», No. 4, 38-45.
[4] (1967) - The Wiener-Paley theorem and other questions in the theory of abstract function. «Math. Sbornik Tom», 73 (115), No. 3, 306—319; English. transl., «Math. USSR Sbornik», 2, No. 3, 271-284.
[5] (1979) - Vector valued functions of strong bounded variation. «Proc. Math. Phys. Soc. Egypt», To be published in 48, July.
[6] (1979) - Fourier series multivariable vector valued functions of strong bounded variation. «Proc. Math. Phys. Soc. Egypt.», To be published in 48, July.
[7] - Parseval's identity and Banach spaces, accepted for publication in «Bull. Faculty of Sc. University of Cairo», Egypt.
[8] (1972) - Criteria for absolute convergence of fourier series of functions of bounded variation, «Trans. Am. Soc.», 163, 1-24.
[9] (1959) - Trigonometrical series, 2nd rev. ed., Cambridge Univ. Press, New York, Mr. 6498.