Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLINA_1977_8_63_5_a13, author = {Ladde, G.S.}, title = {Oscillations caused by retarded perturbations of first order linear ordinary differential equations}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali}, pages = {351--359}, publisher = {mathdoc}, volume = {Ser. 8, 63}, number = {5}, year = {1977}, zbl = {0402.34058}, mrnumber = {0548601}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLINA_1977_8_63_5_a13/} }
TY - JOUR AU - Ladde, G.S. TI - Oscillations caused by retarded perturbations of first order linear ordinary differential equations JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali PY - 1977 SP - 351 EP - 359 VL - 63 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLINA_1977_8_63_5_a13/ LA - en ID - RLINA_1977_8_63_5_a13 ER -
%0 Journal Article %A Ladde, G.S. %T Oscillations caused by retarded perturbations of first order linear ordinary differential equations %J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali %D 1977 %P 351-359 %V 63 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLINA_1977_8_63_5_a13/ %G en %F RLINA_1977_8_63_5_a13
Ladde, G.S. Oscillations caused by retarded perturbations of first order linear ordinary differential equations. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 63 (1977) no. 5, pp. 351-359. http://geodesic.mathdoc.fr/item/RLINA_1977_8_63_5_a13/
[1] On the delay differential equations $x^{\prime}(t) + a(t) f(x(t-\tau)) = 0$ and $x^{\prime\prime}(t) + a(t) f(x(t-r(t))) = 0$, «J. Math. Anal. Appl.», (to appear). | DOI | MR | Zbl
and -[2] Sharp conditions for oscillation caused by delays, University of Rhode Island, Kingston, R. I., Tech. Report N. 64, September, pp. 1-9. | DOI | MR
(1976) -[3] Oscillations of higher-order retarded differential equations generated by the retarded argument, Delay and Functional Differential Equations and their Applications, Academic Press, New York, pp. 219-231. | MR
, and (1972) -[4] Oscillatory solutions of $y^{\prime}(x) = m(x) y(x-n(x))$, «J. Differential Equations», 6, 1-35. | DOI | MR | Zbl
(1969) -[5] Oscillations of an equation relevant to an industrial problem, «Bull. Austral. Math. Soc.», 12, 425-431. | DOI | MR | Zbl
(1975) -