@article{RLINA_1977_8_63_5_a13,
author = {Ladde, G.S.},
title = {Oscillations caused by retarded perturbations of first order linear ordinary differential equations},
journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
pages = {351--359},
year = {1977},
volume = {Ser. 8, 63},
number = {5},
zbl = {0402.34058},
mrnumber = {0548601},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RLINA_1977_8_63_5_a13/}
}
TY - JOUR AU - Ladde, G.S. TI - Oscillations caused by retarded perturbations of first order linear ordinary differential equations JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali PY - 1977 SP - 351 EP - 359 VL - 63 IS - 5 UR - http://geodesic.mathdoc.fr/item/RLINA_1977_8_63_5_a13/ LA - en ID - RLINA_1977_8_63_5_a13 ER -
%0 Journal Article %A Ladde, G.S. %T Oscillations caused by retarded perturbations of first order linear ordinary differential equations %J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali %D 1977 %P 351-359 %V 63 %N 5 %U http://geodesic.mathdoc.fr/item/RLINA_1977_8_63_5_a13/ %G en %F RLINA_1977_8_63_5_a13
Ladde, G.S. Oscillations caused by retarded perturbations of first order linear ordinary differential equations. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 63 (1977) no. 5, pp. 351-359. http://geodesic.mathdoc.fr/item/RLINA_1977_8_63_5_a13/
[1] and - On the delay differential equations $x^{\prime}(t) + a(t) f(x(t-\tau)) = 0$ and $x^{\prime\prime}(t) + a(t) f(x(t-r(t))) = 0$, «J. Math. Anal. Appl.», (to appear). | DOI | MR | Zbl
[2] (1976) - Sharp conditions for oscillation caused by delays, University of Rhode Island, Kingston, R. I., Tech. Report N. 64, September, pp. 1-9. | DOI | MR
[3] , and (1972) - Oscillations of higher-order retarded differential equations generated by the retarded argument, Delay and Functional Differential Equations and their Applications, Academic Press, New York, pp. 219-231. | MR
[4] (1969) - Oscillatory solutions of $y^{\prime}(x) = m(x) y(x-n(x))$, «J. Differential Equations», 6, 1-35. | DOI | MR | Zbl
[5] (1975) - Oscillations of an equation relevant to an industrial problem, «Bull. Austral. Math. Soc.», 12, 425-431. | DOI | MR | Zbl