Convergent solutions of nonlinear differential equations
Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 54 (1973) no. 2, pp. 193-198.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Sono date condizioni sufficienti che assicurano che se $f$ è convergente allora ogni soluzione $v(t)$ dell'equazione $v'(t) = f)t) + F(t,v(t))$ è convergente. Questi risultati sono applicati per scegliere $\lim_{t \to \infty} v(t)$. Soluzioni convergenti sono pure ottenute per l'equazione perturbata $u'(t) = f(t) + F(t,u(t)) + G(t,u(t))$.
@article{RLINA_1973_8_54_2_a2,
     author = {Lovelady, David Lowell},
     title = {Convergent solutions of nonlinear differential equations},
     journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali},
     pages = {193--198},
     publisher = {mathdoc},
     volume = {Ser. 8, 54},
     number = {2},
     year = {1973},
     zbl = {0307.34062},
     mrnumber = {0355240},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RLINA_1973_8_54_2_a2/}
}
TY  - JOUR
AU  - Lovelady, David Lowell
TI  - Convergent solutions of nonlinear differential equations
JO  - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
PY  - 1973
SP  - 193
EP  - 198
VL  - 54
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RLINA_1973_8_54_2_a2/
LA  - en
ID  - RLINA_1973_8_54_2_a2
ER  - 
%0 Journal Article
%A Lovelady, David Lowell
%T Convergent solutions of nonlinear differential equations
%J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali
%D 1973
%P 193-198
%V 54
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RLINA_1973_8_54_2_a2/
%G en
%F RLINA_1973_8_54_2_a2
Lovelady, David Lowell. Convergent solutions of nonlinear differential equations. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 54 (1973) no. 2, pp. 193-198. http://geodesic.mathdoc.fr/item/RLINA_1973_8_54_2_a2/

[1] F. Brauer, Global behavior of solutions of ordinary differential equations, «J. Math. Anal. Appl.», 2, 145-158 (1961). | DOI | MR | Zbl

[2] F. Brauer, Bounds for solutions of ordinary differential equations, «Proc. Amer. Math. Soc.», 14, 36-43 (1963). | DOI | MR | Zbl

[3] W. A. Coppel, Stability and asymptotic behavior of differential equations, D. C. Heath & Co., Boston 1965. | MR | Zbl

[4] T. G. Hallam, A terminal comparison principle for differential inequalities, «Bull. Amer. Math. Soc.», 78, 230-233 (1972). | DOI | MR | Zbl

[5] T. G. Hallam, Convergence of solutions of nonlinear differential equations, «Ann. Mat. Pura Appl.», to appear. | DOI | MR | Zbl

[6] T. G. Hallam and J. W. Heidel, The asymptotic manifolds of a perturbed linear system of differential equations, «Trans. Amer. Math. Soc.», 149, 233-241 (1970). | DOI | MR | Zbl

[7] T. G. Hallam, G. Ladas and V. Lakshmikantham, On the asymptotic behavior of functional differential equations, «SIAM J. Math. Anal.», 3, 58-64 (1972). | DOI | MR | Zbl

[8] T. G. Hallam and V. Lakshmikantham, Growth estimates for convergent solutions of ordinary differential equations, «J. Math. Phys. Sci.», 5, 83-88 (1971). | MR | Zbl

[9] V. Lakshmikantham and S. Leela, Differential and integral inequalities, vol. 1, Academic Press, New York 1969. | MR | Zbl

[10] D. L. Lovelady, A functional differential equation in a Banach space, «Funkcialaj Ekvacioj», 14, 111-122 (1971). | MR | Zbl

[11] D. L. Lovelady, Asymptotic equivalence for two nonlinear systems, «Math. Systems Theory», 7, 170-175 (1973). | DOI | MR | Zbl

[12] D. L. Lovelady, Global attraction and asymptotic equilibrium for nonlinear ordinary equations, Conference on the theory of ordinary and partial differential equations, pp. 303-307, «Lecture Notes Math.», 280, Springer-Verlag, New York 1972. | MR

[13] D. L. Lovelady and R. H. Martin, Jr., A global existence theorem for an ordinary differential equation in a Banach space, «Proc. Amer. Math. Soc.», 35, 445-449 (1972). | DOI | MR

[14] S. M. Lozinskii, Error estimates for the numerical integration of ordinary differential equations I, «Isv. Vyss. Ucebn. Zaved. Mat.», (5) 6, 52-90 (1958) (Russian). | MR | Zbl

[15] J. D. Mamedov, One-sided estimates in the conditions for existence and uniqueness of solutions of the limit Cauchy problem in a Banach space, «Sibirsk. Mat. Ž.», 6, 1190-1196 (1965) (Russian). | MR | Zbl

[16] R. H. Martin, Jr., A global existence theorem for autonomous differential equations in a Banach space, «Proc. Amer. Math. Soc.», 26, 307-314 (1970). | DOI | MR

[17] N. Pavel, Sur certaines équations differentielles abstraites, «Boll. Un. Mat. Ital.», to appear. | MR

[18] T. Wažewski, Sur la limitation des integrales des systèmes d'équations différentielles linéaires ordinaires, «Studia Math.», 10, 48-59 (1948). | fulltext EuDML | DOI | MR | Zbl

[19] A. Wintner, Asymptotic equilibria, «Amer. J. Math.», 68, 125-132 (1946). | DOI | MR | Zbl

[20] A. Wintner, An Abelian lemma concerning asymptotic equilibria, «Amer. J. Math.», 68, 451-454 (1946). | DOI | MR | Zbl

[21] A. Wintner, On a theorem of Bocher in the theory of ordinary linear differential equations, «Amer. J. Math.», 76, 183-190 (1954). | DOI | MR | Zbl