Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RLINA_1972_8_53_5_a1, author = {Chan, C. Y. and Young, E. C.}, title = {Comparison theorems for fourth order quasilinear matrix differential inequalities}, journal = {Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali}, pages = {334--341}, publisher = {mathdoc}, volume = {Ser. 8, 53}, number = {5}, year = {1972}, zbl = {0271.35027 0271.35027}, mrnumber = {0348243}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RLINA_1972_8_53_5_a1/} }
TY - JOUR AU - Chan, C. Y. AU - Young, E. C. TI - Comparison theorems for fourth order quasilinear matrix differential inequalities JO - Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali PY - 1972 SP - 334 EP - 341 VL - 53 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RLINA_1972_8_53_5_a1/ LA - en ID - RLINA_1972_8_53_5_a1 ER -
%0 Journal Article %A Chan, C. Y. %A Young, E. C. %T Comparison theorems for fourth order quasilinear matrix differential inequalities %J Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali %D 1972 %P 334-341 %V 53 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/RLINA_1972_8_53_5_a1/ %G en %F RLINA_1972_8_53_5_a1
Chan, C. Y.; Young, E. C. Comparison theorems for fourth order quasilinear matrix differential inequalities. Atti della Accademia nazionale dei Lincei. Rendiconti della Classe di scienze fisiche, matematiche e naturali, Série 8, Tome 53 (1972) no. 5, pp. 334-341. http://geodesic.mathdoc.fr/item/RLINA_1972_8_53_5_a1/
[1] Ordinary differential equations, Dover, New York 1956. | MR
,[2] Un teorema sulle soluzioni delle equazioni lineari ellittiche autoaggiunte alle derivate parziali del secondo-ordine, «Atti Accad. Naz. Lincei, Rend.», 20, 213-219 (1911). | Zbl
,[3] A generalized Picone identity, «Atti Accad. Naz. Lincei Rend.», 45, 217-220 (1968). | MR | Zbl
,[4] A comparison theorem for general elliptic equations with mixed boundary conditions, «J. Differential Equations», 8, 537-541 (1970). | DOI | MR | Zbl
,[5] A Picone identity for nonself-adjoint elliptic operators, «Atti Accad. Naz. Lincei, Rend.», 48, 133-139 (1970). | MR | Zbl
,[6] Separation and comparison theorems for classes of singular elliptic inequalities and degenerate elliptic inequalities (to appear). | DOI | MR | Zbl
and ,[7] A Sturm theorem for strongly elliptic systems and applications, «Bull. Amer. Math. Soc.», 75, 1025-1027 (1969). | DOI | MR | Zbl
,[8] A Picone identity for strongly elliptic systems, «Duke Math. J.», 38, 473-481 (1971). | MR | Zbl
,[9] On a comparison theorem for strongly elliptic systems, «J. Differential Equations», 10, 173-178 (1971). | DOI | MR | Zbl
and ,[10] A Picone integral identity for a class of fourth order elliptic differential inequalities, «Atti Accad. Naz. Lincei, Rend.», 50, 630-641 (1971). | MR | Zbl
,[11] Sturmi's theorem and oscillation of solutions of strongly elliptic systems, «Dokl. Akad. Nauk. SSSR», 142, 32-35 (1962). | MR
,[12] On eigenvalues and eigenfunctions of strongly elliptic systems of differential equations of second order, «Prace Mat.», 12, 171-182 (1968). | fulltext EuDML | MR | Zbl
,[13] Sturm separation and comparison theorems for ordinary and partial differential equations, «Atti Accad. Naz. Lincei, Mem. Cl. Sci. Fis. Mat. Nat.», sez. I, 9, 135-194 (1969). | MR | Zbl
and ,[14] Remarks on a comparison theorem of Kreith and Travis, «J. Differential Equations», 11, 624-627 (1972). | DOI | MR | Zbl
,[15] Comparison and oscillation theorems for matrix differential inequalities, «Trans. Amer. Math. Soc.», 160, 203-215 (1971). | DOI | MR | Zbl
,[16] Comparison theorems for elliptic differential systems, «Pacific J. Math.», 33, 445-450 (1970). | MR | Zbl
,[17] Sturm separation and comparison theorems for a class of fourth order ordinary and partial differential equations, «Applicable Anal.», in press. | DOI | MR | Zbl
and ,[18] Sturmian theorems for a class of elliptic equations of order 2m (to appear). | DOI | MR | Zbl
and ,[19] The theory of matrices, Vol. 1, Chelsea, New York 1959. | MR | Zbl
,[20] Lectures on elliptic boundary value problems, Van Nostrand Math. Studies, no. 2, Van Nostrand, New Jersey 1965. | MR | Zbl
,