Un semplice modo per trattare le grandezze infinite ed infinitesime
La Matematica nella società e nella cultura, Série 1, Tome 8 (2015) no. 1, pp. 111-147.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

@article{RIUMI_2015_1_8_1_a4,
     author = {Sergeyev, Yaroslav D.},
     title = {Un semplice modo per trattare le grandezze infinite ed infinitesime},
     journal = {La Matematica nella societ\`a e nella cultura},
     pages = {111--147},
     publisher = {mathdoc},
     volume = {Ser. 1, 8},
     number = {1},
     year = {2015},
     zbl = {1252.37017},
     mrnumber = {3364901},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/RIUMI_2015_1_8_1_a4/}
}
TY  - JOUR
AU  - Sergeyev, Yaroslav D.
TI  - Un semplice modo per trattare le grandezze infinite ed infinitesime
JO  - La Matematica nella società e nella cultura
PY  - 2015
SP  - 111
EP  - 147
VL  - 8
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RIUMI_2015_1_8_1_a4/
LA  - it
ID  - RIUMI_2015_1_8_1_a4
ER  - 
%0 Journal Article
%A Sergeyev, Yaroslav D.
%T Un semplice modo per trattare le grandezze infinite ed infinitesime
%J La Matematica nella società e nella cultura
%D 2015
%P 111-147
%V 8
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RIUMI_2015_1_8_1_a4/
%G it
%F RIUMI_2015_1_8_1_a4
Sergeyev, Yaroslav D. Un semplice modo per trattare le grandezze infinite ed infinitesime. La Matematica nella società e nella cultura, Série 1, Tome 8 (2015) no. 1, pp. 111-147. http://geodesic.mathdoc.fr/item/RIUMI_2015_1_8_1_a4/

[1] L. D'Alotto. Cellular automata using infinite computations. Applied Mathematics and Computation, 218(16):8077-8082, 2012. | DOI | MR | Zbl

[2] S. De Cosmis and R. De Leone. The use of grossone in mathematical programming and operations research. Applied Mathematics and Computation, 218(16):8029-8038, 2012. | DOI | MR | Zbl

[3] P. Gordon, Numerical cognition without words: Evidence from Amazonia, Science, 306(15):496-499, 2004.

[4] D.I. Iudin, Ya.D. Sergeyev, and M. Hayakawa. Interpretation of percolation in terms of infinity computations. Applied Mathematics and Computation, 218(16):8099-8111, 2012. | DOI | MR | Zbl

[5] D.I. Iudin, Ya.D. Sergeyev, and M. Hayakawa. Infinity computations in cellular automaton forest-fire model. Communications in Nonlinear Science and Numerical Simulation, 20(3):861-870, 2015.

[6] V. Kanovei and V. Lyubetsky. Grossone approach to Hutton and Euler transforms. Applied Mathematics and Computation, 255:36-43, 2015. | DOI | MR | Zbl

[7] G. Lolli, Nascita di un'idea matematica, Edizioni della Scuola Normale Superiore, Pisa, 2013. | Zbl

[8] G. Lolli. Infinitesimals and infinites in the history of mathematics: A brief survey. Applied Mathematics and Computation, 218(16):7979-7988, 2012. | DOI | MR | Zbl

[9] G. Lolli. Metamathematical investigations on the theory of grossone. Applied Mathematics and Computation, 255:3-14, 2015. | DOI | MR | Zbl

[10] M. Margenstern. Using grossone to count the number of elements of infinite sets and the connection with bijections. p-Adic Numbers, Ultrametric Analysis and Applications, 3(3):196-204, 2011. | DOI | MR | Zbl

[11] M. Margenstern. An application of grossone to the study of a family of tilings of the hyperbolic plane. Applied Mathematics and Computation, 218(16):8005-8018, 2012. | DOI | MR | Zbl

[12] M. Margenstern. Fibonacci words, hyperbolic tilings and grossone. Communications in Nonlinear Science and Numerical Simulation, 21(1-3):3-11, 2015. | DOI | MR | Zbl

[13] F. Montagna, G. Simi, and A. Sorbi. Taking the Pirahã seriously. Communications in Nonlinear Science and Numerical Simulation, 21(1-3):52-69, 2015. | DOI | MR | Zbl

[14] P. Pica, C. Lemer, V. Izard, S. Dehaene. Exact and approximate arithmetic in an amazonian indigene group, Science, 306(15):499-503, 2004.

[15] Ya.D. Sergeyev, Arithmetic of Infinity, Edizioni Orizzonti Meridionali, CS, 2003, the 2d electronic edition, 2013. | MR

[16] Ya.D. Sergeyev. Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers. Chaos, Solitons & Fractals, 33(1):50-75, 2007. | DOI | MR

[17] Ya.D. Sergeyev. A new applied approach for executing computations with infinite and infinitesimal quantities. Informatica, 19(4):567-596, 2008. | MR | Zbl

[18] Ya.D. Sergeyev. Evaluating the exact infinitesimal values of area of Sierpinski's carpet and volume of Menger's sponge. Chaos, Solitons & Fractals, 42(5):3042-3046, 2009.

[19] Ya.D. Sergeyev. Numerical computations and mathematical modelling with infinite and infinitesimal numbers. Journal of Applied Mathematics and Computing, 29:177-195, 2009. | DOI | MR | Zbl

[20] Ya.D. Sergeyev. Numerical point of view on Calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains. Nonlinear Analysis Series A: Theory, Methods & Applications, 71(12):e1688-e1707, 2009. | DOI | MR

[21] Ya.D. Sergeyev. Computer system for storing infinite, infinitesimal, and finite quantities and executing arithmetical operations with them. EU patent 1728149, issued 2009; USA patent 7,860,914, issued 2010; RF Patent 2395111, issued 20.07.2010. | DOI | MR

[22] Ya.D. Sergeyev. Counting systems and the First Hilbert problem. Nonlinear Analysis Series A: Theory, Methods & Applications, 72(3-4):1701-1708, 2010. | DOI | MR

[23] Ya.D. Sergeyev. Lagrange Lecture: Methodology of numerical computations with infinities and infinitesimals. Rendiconti del Seminario Matematico dell'Università e del Politecnico di Torino, 68(2):95-113, 2010. | MR | Zbl

[24] Ya.D. Sergeyev. Higher order numerical differentiation on the Infinity Computer. Optimization Letters, 5(4):575-585, 2011. | DOI | MR | Zbl

[25] Ya.D. Sergeyev. On accuracy of mathematical languages used to deal with the Riemann zeta function and the Dirichlet eta function. p-Adic Numbers, Ultrametric Analysis and Applications, 3(2):129-148, 2011. | DOI | MR | Zbl

[26] Ya.D. Sergeyev. Using blinking fractals for mathematical modelling of processes of growth in biological systems. Informatica, 22(4):559-576, 2011. | MR | Zbl

[27] Ya.D. Sergeyev (2013) Solving ordinary differential equations by working with infinitesimals numerically on the Infinity Computer, Applied Mathematics and Computation, 219(22), 10668-10681. | DOI | MR | Zbl

[28] Ya.D. Sergeyev (2013) Numerical computations with infinite and infinitesimal numbers: Theory and applications, in ``Dynamics of Information Systems: Algorithmic Approaches'' edited by Sorokin, A., Pardalos, P.M., Springer, New York, pp. 1-66. | DOI | MR

[29] Ya.D. Sergeyev and A. Garro. Observability of Turing machines: A refinement of the theory of computation. Informatica, 21(3):425-454, 2010. | MR | Zbl

[30] Ya.D. Sergeyev and A. Garro. Single-tape and Multi-tape Turing Machines through the lens of the Grossone methodology. The Journal of Supercomputing, 65(2):645-663, 2013.

[31] Ya.D. Sergeyev, A. Garro. The Grossone methodology perspective on Turing machines, in ``Automata, Universality, Computation'', A. Adamatzky (ed.), Springer Series ``Emergence, Complexity and Computation'', Vol. 12: 139-169, 2015. | DOI | MR | Zbl

[32] M.C. Vita, S. De Bartolo, C. Fallico, and M. Veltri. Usage of infinitesimals in the Menger's Sponge model of porosity. Applied Mathematics and Computation, 218(16):8187-8196, 2012. | DOI | MR | Zbl

[33] P. Zellini. Breve storia dell'infinito, Adelphi, Milano, 2006.

[34] A.A. Zhigljavsky. Computing sums of conditionally convergent and divergent series using the concept of grossone. Applied Mathematics and Computation, 218(16):8064- 8076, 2012. | DOI | MR | Zbl

[35] A. Zilinskas. On strong homogeneity of two global optimization algorithms based on statistical models of multimodal objective functions. Applied Mathematics and Computation, 218(16):8131-8136, 2012. | DOI | MR | Zbl

[36] http://www.theinfinitycomputer.com