Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RIUMI_2015_1_8_1_a4, author = {Sergeyev, Yaroslav D.}, title = {Un semplice modo per trattare le grandezze infinite ed infinitesime}, journal = {La Matematica nella societ\`a e nella cultura}, pages = {111--147}, publisher = {mathdoc}, volume = {Ser. 1, 8}, number = {1}, year = {2015}, zbl = {1252.37017}, mrnumber = {3364901}, language = {it}, url = {http://geodesic.mathdoc.fr/item/RIUMI_2015_1_8_1_a4/} }
TY - JOUR AU - Sergeyev, Yaroslav D. TI - Un semplice modo per trattare le grandezze infinite ed infinitesime JO - La Matematica nella società e nella cultura PY - 2015 SP - 111 EP - 147 VL - 8 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RIUMI_2015_1_8_1_a4/ LA - it ID - RIUMI_2015_1_8_1_a4 ER -
Sergeyev, Yaroslav D. Un semplice modo per trattare le grandezze infinite ed infinitesime. La Matematica nella società e nella cultura, Série 1, Tome 8 (2015) no. 1, pp. 111-147. http://geodesic.mathdoc.fr/item/RIUMI_2015_1_8_1_a4/
[1] Cellular automata using infinite computations. Applied Mathematics and Computation, 218(16):8077-8082, 2012. | DOI | MR | Zbl
.[2] The use of grossone in mathematical programming and operations research. Applied Mathematics and Computation, 218(16):8029-8038, 2012. | DOI | MR | Zbl
and .[3] Numerical cognition without words: Evidence from Amazonia, Science, 306(15):496-499, 2004.
,[4] Interpretation of percolation in terms of infinity computations. Applied Mathematics and Computation, 218(16):8099-8111, 2012. | DOI | MR | Zbl
, , and .[5] Infinity computations in cellular automaton forest-fire model. Communications in Nonlinear Science and Numerical Simulation, 20(3):861-870, 2015.
, , and .[6] Grossone approach to Hutton and Euler transforms. Applied Mathematics and Computation, 255:36-43, 2015. | DOI | MR | Zbl
and .[7] Nascita di un'idea matematica, Edizioni della Scuola Normale Superiore, Pisa, 2013. | Zbl
,[8] Infinitesimals and infinites in the history of mathematics: A brief survey. Applied Mathematics and Computation, 218(16):7979-7988, 2012. | DOI | MR | Zbl
.[9] Metamathematical investigations on the theory of grossone. Applied Mathematics and Computation, 255:3-14, 2015. | DOI | MR | Zbl
.[10] Using grossone to count the number of elements of infinite sets and the connection with bijections. p-Adic Numbers, Ultrametric Analysis and Applications, 3(3):196-204, 2011. | DOI | MR | Zbl
.[11] An application of grossone to the study of a family of tilings of the hyperbolic plane. Applied Mathematics and Computation, 218(16):8005-8018, 2012. | DOI | MR | Zbl
.[12] Fibonacci words, hyperbolic tilings and grossone. Communications in Nonlinear Science and Numerical Simulation, 21(1-3):3-11, 2015. | DOI | MR | Zbl
.[13] Taking the Pirahã seriously. Communications in Nonlinear Science and Numerical Simulation, 21(1-3):52-69, 2015. | DOI | MR | Zbl
, , and .[14] Exact and approximate arithmetic in an amazonian indigene group, Science, 306(15):499-503, 2004.
, , , .[15] Arithmetic of Infinity, Edizioni Orizzonti Meridionali, CS, 2003, the 2d electronic edition, 2013. | MR
,[16] Blinking fractals and their quantitative analysis using infinite and infinitesimal numbers. Chaos, Solitons & Fractals, 33(1):50-75, 2007. | DOI | MR
.[17] A new applied approach for executing computations with infinite and infinitesimal quantities. Informatica, 19(4):567-596, 2008. | MR | Zbl
.[18] Evaluating the exact infinitesimal values of area of Sierpinski's carpet and volume of Menger's sponge. Chaos, Solitons & Fractals, 42(5):3042-3046, 2009.
.[19] Numerical computations and mathematical modelling with infinite and infinitesimal numbers. Journal of Applied Mathematics and Computing, 29:177-195, 2009. | DOI | MR | Zbl
.[20] Numerical point of view on Calculus for functions assuming finite, infinite, and infinitesimal values over finite, infinite, and infinitesimal domains. Nonlinear Analysis Series A: Theory, Methods & Applications, 71(12):e1688-e1707, 2009. | DOI | MR
.[21] Computer system for storing infinite, infinitesimal, and finite quantities and executing arithmetical operations with them. EU patent 1728149, issued 2009; USA patent 7,860,914, issued 2010; RF Patent 2395111, issued 20.07.2010. | DOI | MR
.[22] Counting systems and the First Hilbert problem. Nonlinear Analysis Series A: Theory, Methods & Applications, 72(3-4):1701-1708, 2010. | DOI | MR
.[23] Lagrange Lecture: Methodology of numerical computations with infinities and infinitesimals. Rendiconti del Seminario Matematico dell'Università e del Politecnico di Torino, 68(2):95-113, 2010. | MR | Zbl
.[24] Higher order numerical differentiation on the Infinity Computer. Optimization Letters, 5(4):575-585, 2011. | DOI | MR | Zbl
.[25] On accuracy of mathematical languages used to deal with the Riemann zeta function and the Dirichlet eta function. p-Adic Numbers, Ultrametric Analysis and Applications, 3(2):129-148, 2011. | DOI | MR | Zbl
.[26] Using blinking fractals for mathematical modelling of processes of growth in biological systems. Informatica, 22(4):559-576, 2011. | MR | Zbl
.[27] Solving ordinary differential equations by working with infinitesimals numerically on the Infinity Computer, Applied Mathematics and Computation, 219(22), 10668-10681. | DOI | MR | Zbl
(2013)[28] Numerical computations with infinite and infinitesimal numbers: Theory and applications, in ``Dynamics of Information Systems: Algorithmic Approaches'' edited by Sorokin, A., Pardalos, P.M., Springer, New York, pp. 1-66. | DOI | MR
(2013)[29] Observability of Turing machines: A refinement of the theory of computation. Informatica, 21(3):425-454, 2010. | MR | Zbl
and .[30] Single-tape and Multi-tape Turing Machines through the lens of the Grossone methodology. The Journal of Supercomputing, 65(2):645-663, 2013.
and .[31] The Grossone methodology perspective on Turing machines, in ``Automata, Universality, Computation'', A. Adamatzky (ed.), Springer Series ``Emergence, Complexity and Computation'', Vol. 12: 139-169, 2015. | DOI | MR | Zbl
, .[32] Usage of infinitesimals in the Menger's Sponge model of porosity. Applied Mathematics and Computation, 218(16):8187-8196, 2012. | DOI | MR | Zbl
, , , and .[33] Breve storia dell'infinito, Adelphi, Milano, 2006.
.[34] Computing sums of conditionally convergent and divergent series using the concept of grossone. Applied Mathematics and Computation, 218(16):8064- 8076, 2012. | DOI | MR | Zbl
.[35] On strong homogeneity of two global optimization algorithms based on statistical models of multimodal objective functions. Applied Mathematics and Computation, 218(16):8131-8136, 2012. | DOI | MR | Zbl
.[36] http://www.theinfinitycomputer.com