Numeri colorati e Ultimo Teorema di Fermat
La Matematica nella società e nella cultura, Série 1, Tome 4 (2011) no. 2, pp. 171-179
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
In 1916 Issai Schur proved that if the set $\mathbb{N}$ is finitely colored, there exist $x$, $y$ and $z$ having the same color such that $x + y = z$. He used this result for the study of the so-called ``local version'' of the the Fermat's Last Theorem showing that for every positive integer $n$ and a sufficiently large prime $p$, the congruence $x^{n} + y^{n} = z^{n} \pmod p$ has a non-trivial solution in integers modulo $p$. In this article an elementary presentation of the above results will be given. To this purpose, the conditions for which a complete graph with colored edges contains a monocromatic triangle will be investigated.
@article{RIUMI_2011_1_4_2_a1,
author = {Cocozza, Maria and Russo, Alessio},
title = {Numeri colorati e {Ultimo} {Teorema} di {Fermat}},
journal = {La Matematica nella societ\`a e nella cultura},
pages = {171--179},
year = {2011},
volume = {Ser. 1, 4},
number = {2},
zbl = {1323.11016},
mrnumber = {2896006},
language = {it},
url = {http://geodesic.mathdoc.fr/item/RIUMI_2011_1_4_2_a1/}
}
Cocozza, Maria; Russo, Alessio. Numeri colorati e Ultimo Teorema di Fermat. La Matematica nella società e nella cultura, Série 1, Tome 4 (2011) no. 2, pp. 171-179. http://geodesic.mathdoc.fr/item/RIUMI_2011_1_4_2_a1/