Equivalenze tra teoremi: il programma di ricerca della reverse mathematics
La Matematica nella società e nella cultura, Série 1, Tome 2 (2009) no. 1, pp. 101-126.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

La logica matematica ha sviluppato strumenti in grado di rendere precise affermazioni del tipo «il teorema A è più forte del teorema B». In particolare sono stati ottenuti un consistente numero di risultati che stabiliscono la forza assiomatica di molti teoremi in diversi settori della matematica. I risultati in questione hanno dato origine ad un programma di ricerca noto con il nome di reverse mathematics. Nel presente articolo evidenziamo gli «antenati» della reverse mathematics, descriviamo lo stato attuale della ricerca, e illustriamo il significato della reverse mathematics per i fondamenti della matematica.
Mathematical Logic can give a precise meaning to statements of the form «Theorem A is stronger than Theorem B». In the last few decades logicians have proved many results about the axiomatic strength of theorems from different areas of mathematics. These results form a research project known as reverse mathematics. In this paper we discuss the antecedents of reverse mathematics, describe the current research in the area, and elucidate the import of reverse mathematics upon the foundations of mathematics.
@article{RIUMI_2009_1_2_1_a3,
     author = {Marcone, Alberto},
     title = {Equivalenze tra teoremi: il programma di ricerca della reverse mathematics},
     journal = {La Matematica nella societ\`a e nella cultura},
     pages = {101--126},
     publisher = {mathdoc},
     volume = {Ser. 1, 2},
     number = {1},
     year = {2009},
     zbl = {1186.03020},
     mrnumber = {2537477},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/RIUMI_2009_1_2_1_a3/}
}
TY  - JOUR
AU  - Marcone, Alberto
TI  - Equivalenze tra teoremi: il programma di ricerca della reverse mathematics
JO  - La Matematica nella società e nella cultura
PY  - 2009
SP  - 101
EP  - 126
VL  - 2
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RIUMI_2009_1_2_1_a3/
LA  - it
ID  - RIUMI_2009_1_2_1_a3
ER  - 
%0 Journal Article
%A Marcone, Alberto
%T Equivalenze tra teoremi: il programma di ricerca della reverse mathematics
%J La Matematica nella società e nella cultura
%D 2009
%P 101-126
%V 2
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RIUMI_2009_1_2_1_a3/
%G it
%F RIUMI_2009_1_2_1_a3
Marcone, Alberto. Equivalenze tra teoremi: il programma di ricerca della reverse mathematics. La Matematica nella società e nella cultura, Série 1, Tome 2 (2009) no. 1, pp. 101-126. http://geodesic.mathdoc.fr/item/RIUMI_2009_1_2_1_a3/

[1] Ron Aharoni - Menachem Magidor - Richard A. Shore, On the strength of König's duality theorem for infinite bipartite graphs, J. Combin. Theory Ser. B, 54, n. 2 (1992), 257-290. | DOI | MR | Zbl

[2] Jeremy Avigad, Number theory and elementary arithmetic, Philos. Math. (3), 11 (2003), 257-284. | DOI | MR | Zbl

[3] Douglas K. Brown, Notions of compactness in weak subsystems of second order arithmetic, In Simpson [23], 47-66. | MR | Zbl

[4] Krzysztof Ciesielski, Set theory for the working mathematician, Cambridge University Press (1997), xii+236. | DOI | MR | Zbl

[5] P. Erdŏs - P. Komjáth, Countable decompositions of $\mathbb{R}^{2}$ and $\mathbb{R}^{3}$, Discrete Comput. Geom., 5, n. 4 (1990), 325-331. | fulltext EuDML | DOI | MR

[6] Harvey Friedman, Necessary uses of abstract set theory in finite mathematics, Adv. in Math., 60, n. 1 (1986), 92-122. | DOI | MR | Zbl

[7] Harvey Friedman, Finite functions and the necessary use of large cardinals, Ann. of Math. (2), 148, n. 3 (1998), 803-893. | fulltext EuDML | DOI | MR | Zbl

[8] Harvey Friedman - Stephen G. Simpson, Issues and problems in reverse mathematics, In Computability theory and its applications (Boulder, CO 1999), Amer. Math. Soc. (2000), 127-144. | DOI | MR | Zbl

[9] David Hilbert - Paul Bernays, Grundlagen der Mathematik. I, Springer-Verlag, Berlin (1968), xv+473. | MR

[10] David Hilbert - Paul Bernays, Grundlagen der Mathematik. II, Springer-Verlag, Berlin (1970), xiv+561. | MR

[11] Paul Howard - Jean E. Rubin, Consequences of the axiom of choice, American Mathematical Society, Providence RI (1998), viii+432. | DOI | MR | Zbl

[12] A. James Humphreys, Did Cantor need set theory?, In Simpson [23], 244-270. | MR | Zbl

[13] Akihiro Kanamori, The higher infinite, Springer-Verlag, Berlin (1994), xxiv+536. | MR | Zbl

[14] Stephen Cole Kleene, Introduction to metamathematics, D. Van Nostrand Co. Inc., NewYork, N.Y. (1952), x+550. | MR

[15] Azriel Lévy, Basic set theory, Springer-Verlag, Berlin (1979), xiv+391. | MR

[16] Richard S. Millman - George D. Parker, Geometry, Springer-Verlag, New York (1991), xiv+370. | DOI | MR

[17] Carl Mummert - Stephen G. Simpson, Reverse mathematics and $\Pi^{1}_{2}$ comprehension, Bull. Symbolic Logic, 11, n. 4 (2005), 526-533. | MR | Zbl

[18] Herman Rubin - Jean E. Rubin, Equivalents of the axiom of choice. II, Studies in Logic and the Foundations of Mathematics, North-Holland Publishing Co., 116 (1985), xxviii+322. | MR | Zbl

[19] Stephen G. Simpson, Which set existence axioms are needed to prove the Cauchy/Peano theorem for ordinary differential equations? J. Symbolic Logic, 49, n. 3 (1984), 783-802. | DOI | MR | Zbl

[20] Stephen G. Simpson, Partial realizations of Hilbert's Program, J. Symbolic Logic, 53, n. 2 (1988), 349-363. | DOI | MR | Zbl

[21] Stephen G. Simpson, On the strength of König's duality theorem for countable bipartite graphs, J. Symbolic Logic, 59, n. 1 (1994), 113-123. | DOI | MR | Zbl

[22] Stephen G. Simpson, Subsystems of second order arithmetic, Springer-Verlag, Berlin (1999), xiv+445. | DOI | MR | Zbl

[23] STEPHEN G. SIMPSON editor, Reverse mathematics 2001. Lecture Notes in Logic. Association for Symbolic Logic, La Jolla, Ca, 2005. | MR

[24] William W. Tait, Finitism, J. Philos., 78 (1981), 524-546.

[25] Hermann Weyl, Das Kontinuum: Kritische Untersuchungen über die Grundlagen der Analysis, Veit, Leipzig (1918).