Sistemi dinamici discreti olomorfi locali
La Matematica nella società e nella cultura, Série 1, Tome 1 (2008) no. 3, pp. 409-441.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

La teoria dei sistemi dinamici si distingue da altri settori della matematica non per gli oggetti che studia ma per le domande che si pone su di loro. Per esempio, un sistema dinamico discreto è semplicemente un'applicazione (misurabile, continua, differenziable, olomorfa...) di uno spazio in sé. Studiare un'applicazione $f$ dal punto di vista dinamico significa allora studiare il comportamento qualitativo delle iterate $f^{k} = f \circ f \circ \cdots \circ f$ al tendere di $k$ all'infinito. In questo articolo vogliamo dare un'idea del tipo di questioni che si affrontano in dinamica restringendoci a un argomento limitato ma importante, la dinamica discreta olomorfa locale, che studia il comportamento dinamico di applicazioni olomorfe definite nell'intorno di un punto fisso. Nata alla fine dell'ottocento, più o meno in contemporanea con l'intero campo dei sistemi dinamici, ha avuto un grosso sviluppo negli ultimi trent'anni, con la dimostrazione di importanti risultati e lo sviluppo di nuove significative tematiche e naturali problemi aperti. Ne presenteremo le problematiche di base e i principali risultati ottenuti, evidenziando le idee più significative, almeno nel caso unidimensionale.
The difference between the theory of dynamical systems and other branches of Mathematics is not in the objects of study, but in the questions asked about them. For instance, a discrete dynamical system simply is a (measurable, continuous, differentiable, holomorphic...) self-map of a space. Studying a map $f$ from a dynamical point of view then means studying the qualitative behavior of the iterates $f^{k} = f \circ f \circ \cdots \circ f$ as $k$ goes to infinity. In this paper we would like to give an idea of the kind of arguments the theory of dynamical systems deals with, concentrating our attention to a limited but important subject, the local discrete holomorphic dynamics, that is the study of the dynamical behaviour of holomorphic maps defined in a neighbourhood of a fixed point. Born toward the end of the nineteenth century, more or less in the same years the general theory of dynamical systems was born, local discrete holomorphic dynamics have seen major developments in the last thirty years, when several important results have been proved, and new significants areas have started to be explored, providing a wealth of natural open problems. We shall describe the basic themes and main results of the theory, stressing the more significant ideas, at least in the one-dimensional case.
@article{RIUMI_2008_1_1_3_a1,
     author = {Abate, Marco},
     title = {Sistemi dinamici discreti olomorfi locali},
     journal = {La Matematica nella societ\`a e nella cultura},
     pages = {409--441},
     publisher = {mathdoc},
     volume = {Ser. 1, 1},
     number = {3},
     year = {2008},
     zbl = {1072.37036},
     mrnumber = {2500205},
     language = {it},
     url = {http://geodesic.mathdoc.fr/item/RIUMI_2008_1_1_3_a1/}
}
TY  - JOUR
AU  - Abate, Marco
TI  - Sistemi dinamici discreti olomorfi locali
JO  - La Matematica nella società e nella cultura
PY  - 2008
SP  - 409
EP  - 441
VL  - 1
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RIUMI_2008_1_1_3_a1/
LA  - it
ID  - RIUMI_2008_1_1_3_a1
ER  - 
%0 Journal Article
%A Abate, Marco
%T Sistemi dinamici discreti olomorfi locali
%J La Matematica nella società e nella cultura
%D 2008
%P 409-441
%V 1
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RIUMI_2008_1_1_3_a1/
%G it
%F RIUMI_2008_1_1_3_a1
Abate, Marco. Sistemi dinamici discreti olomorfi locali. La Matematica nella società e nella cultura, Série 1, Tome 1 (2008) no. 3, pp. 409-441. http://geodesic.mathdoc.fr/item/RIUMI_2008_1_1_3_a1/

[A1] M. Abate, An introduction to hyperbolic dynamical systems. I.E.P.I. Pisa, 2001.

[A2] M. Abate, Discrete local holomorphic dynamics. In Proceedings of 13th. Seminar on Analysis and Its Applications, Isfahan 2003. Eds. S. Azam et al., University of Isfahan, Iran, 2005, 1-32. | MR | Zbl

[BS] E. Bedford - J. Smillie, Polynomial diffeomorphisms of $\mathbb{C}^2$. VI. Connectivity of J. Ann. of Math., 148 (1998), 695-735. | DOI | MR | Zbl

[B1] K. Biswas, Smooth combs inside hedgehogs. Disc. Cont. Dyn. Sys., 12 (2005), 853-880. | DOI | MR | Zbl

[B2] K. Biswas, Hedgehogs of Hausdorff dimension one, Preprint, 2003. | DOI | MR | Zbl

[Bö] L.E. Böttcher, The principal laws of convergence of iterates and their application to analysis. Izv. Kazan. Fiz.-Mat. Obshch., 14 (1904), 155-234.

[Bry1] A.D. Bryuno, Convergence of transformations of differential equations to normal forms. Dokl. Akad. Nauk. USSR, 165 (1965), 987-989. | MR

[Bry2] A.D. Bryuno, Analytical form of differential equations, I. Trans. Moscow Math. Soc., 25 (1971), 131-288. | Zbl

[Bry3] A.D. Bryuno, Analytical form of differential equations, II. Trans. Moscow Math. Soc., 26 (1972), 199-239. | Zbl

[BC] X. Buff - A. Chéritat, The Brjuno function continuously estimates the size of quadratic Siegel disks. Ann. of Math., 164 (2006), 265-312. | DOI | MR | Zbl

[C] C. Camacho, On the local structure of conformal mappings and holomorphic vector fields. Astérisque, 59-60 (1978), 83-94.

[Cr1] H. Cremer, Zum Zentrumproblem. Math. Ann., 98 (1927), 151-163. | fulltext EuDML | DOI | MR

[Cr2] H. Cremer, Über die Häufigkeit der Nichtzentren. Math. Ann., 115 (1938), 573-580. | fulltext EuDML | DOI | MR | Zbl

[É1] J. Écalle, Les fonctions résurgentes. Tome I: Les algèbres de fonctions résurgentes. Publ. Math. Orsay, 81-05, Université de Paris-Sud, Orsay, 1981. | MR | Zbl

[É2] J. Écalle, Les fonctions résurgentes. Tome II: Les fonctions résurgentes appliquées à l'itération. Publ. Math. Orsay 81-06, Université de Paris-Sud, Orsay, 1981. | MR | Zbl

[F1] P. Fatou, Sur les équations fonctionnelles, I. Bull. Soc. Math. France, 47 (1919), 161-271. | fulltext EuDML | MR | Zbl

[F2] P. Fatou, Sur les équations fonctionnelles, II. Bull. Soc. Math. France, 48 (1920, 33-94. | fulltext EuDML | MR

[F3] P. Fatou, Sur les équations fonctionnelles, III. Bull. Soc. Math. France, 48 (1920), 208-314. | fulltext EuDML | MR

[HK] B. Hasselblatt - A. Katok, Introduction to the modern theory of dynamical systems. Cambridge Univ. Press, Cambridge, 1995. | DOI | MR | Zbl

[He] M. Herman, Recent results and some open questions on Siegel's linearization theorem of germs of complex analytic diffeomorphisms of $\mathbb{C}^n$ near a fixed point. Proc. 8th Int. Cong. Math. Phys., World Scientific, Singapore, 1986, pp. 138-198. | MR

[HP] J.H. Hubbard - P. Papadopol, Superattractive fixed points in $\mathbb{C}^n$. Indiana Univ. Math. J., 43 (1994), 321-365. | DOI | MR | Zbl

[I] Yu.S. Il'Yashenko, Nonlinear Stokes phenomena. In Nonlinear Stokes phenomena. Adv. in Soviet Math., 14, Am. Math. Soc., Providence, 1993, 1-55. | MR

[K] T. Kimura, On the iteration of analytic functions. Funk. Eqvacioj, 14 (1971), 197-238. | MR | Zbl

[Kœ] G. Kœnigs, Recherches sur les integrals de certain equations fonctionelles. Ann. Sci. Éc. Norm. Sup. 1 (1884), 1-41. | fulltext EuDML

[L] L. Leau, Étude sur les equations fonctionelles à une ou plusieurs variables. Ann. Fac. Sci. Toulouse, 11 (1897), E1-E110. | fulltext EuDML | MR

[M1] B. Malgrange, Travaux d'Écalle et de Martinet-Ramis sur les systèmes dynamiques. Astérisque, 92-93 (1981/82), 59-73. | fulltext EuDML | MR

[M2] B. Malgrange, Introduction aux travaux de J. Écalle. Ens. Math., 31 (1985), 261-282. | MR

[Ma] S. Marmi, An introduction to small divisors problems. I.E.P.I., Pisa, 2000.

[Mi] J. Milnor, Dynamics in one complex variable. Third edition. Annals of Mathematics Studies, 160. Princeton University Press, Princeton, 2006. | MR | Zbl

[P1] R. Pérez-Marco, Sur les dynamiques holomorphes non linéarisables et une conjecture de V.I. Arnold. Ann. Sci. École Norm. Sup., 26 (1993), 565-644. | fulltext EuDML | MR | Zbl

[P2] R. Pérez-Marco, Topology of Julia sets and hedgehogs. Preprint, Université de Paris-Sud, 1994, 94-48.

[P3] R. Pérez-Marco, Non-linearizable holomorphic dynamics having an uncountable number of symmetries. Invent. Math., 199 (1995), 67-127. | fulltext EuDML | DOI | MR | Zbl

[P4] R. Pérez-Marco, Hedgehogs dynamics. Preprint, 1995.

[P5] R. Pérez-Marco, Sur une question de Dulac et Fatou. C.R. Acad. Sci. Paris, 321 (1995), 1045-1048. | MR

[P6] R. Pérez-Marco, Fixed points and circle maps. Acta Math., 179 (1997), 243-294. | DOI | MR | Zbl

[P7] R. Pérez-Marco, Total convergence or general divergence in small divisors. Comm. Math. Phys., 223 (2001), 451-464. | DOI | MR | Zbl

[S] A.A. Shcherbakov, Topological classification of germs of conformal mappings with identity linear part. Moscow Univ. Math. Bull., 37 (1982), 60-65. | MR | Zbl

[Si] C.L. Siegel, Iteration of analytic functions. Ann. of Math., 43 (1942), 607- 612. | DOI | MR | Zbl

[V] S.M. Voronin, Analytic classification of germs of conformal maps $(\mathbb{C}; 0) \to (\mathbb{C}; 0)$ with identity linear part. Func. Anal. Appl., 15 (1981), 1-17. | MR

[Y1] J.-C. Yoccoz, Linéarisation des germes de difféomorphismes holomorphes de $(\mathbb{C}; 0)$. C.R. Acad. Sci. Paris, 306 (1988), 55-58. | MR

[Y2] J.-C. Yoccoz, Théorème de Siegel, nombres de Bryuno et polynômes quadratiques. Astérisque, 231 (1995), 3-88. | MR