Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RIUMI_2008_1_1_2_a8, author = {Bardelle, Cristina}, title = {Teorema del centro di {Lyapunov} equivariante per {PDE}}, journal = {La Matematica nella societ\`a e nella cultura}, pages = {227--230}, publisher = {mathdoc}, volume = {Ser. 1, 1}, number = {2}, year = {2008}, zbl = {1008.35003}, mrnumber = {1822409}, language = {it}, url = {http://geodesic.mathdoc.fr/item/RIUMI_2008_1_1_2_a8/} }
Bardelle, Cristina. Teorema del centro di Lyapunov equivariante per PDE. La Matematica nella società e nella cultura, Série 1, Tome 1 (2008) no. 2, pp. 227-230. http://geodesic.mathdoc.fr/item/RIUMI_2008_1_1_2_a8/
[1] Lyapunov center theorem for some nonlinear PDE's: a simple proof, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 29 (2000), 823-837. | fulltext EuDML | MR | Zbl
,[2] Construction of quasi-periodic solutions for Hamiltonian perturbations of linear equations and applications to nonlinear PDE, Internat. Math. Res. Notices (1994), 475ff., approx. 21 pp. (electronic). | DOI | MR | Zbl
,[3] Newton's method and periodic solutions of nonlinear wave equations, Comm. Pure Appl. Math., 46 (1993), 1409-1498. | DOI | MR | Zbl
and ,[4] Nearly integrable infinite-dimensional Hamiltonian systems, Lecture Notes in Mathematics, Springer-Verlag, Berlin, 1556 (1993), xxviii+101. | DOI | MR | Zbl
,[5] The Poincaré-Lyapunov-Liouville-Arnold's theorem, Funktsional. Anal. i Prilozhen., 28 (1994), 67-69. | DOI | MR
,