Free Energy of Gravitating Fermions
Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Conférences de J. Bros, P. Schapira et W. Thirring et un texte de R. Gérard et A.H.M. Levelt, Tome 14 (1972), Exposé no. 3, 26 p.

Voir la notice de l'acte provenant de la source Numdam

@article{RCP25_1972__14__A3_0,
     author = {Thirring, Walter},
     title = {Free {Energy} of {Gravitating} {Fermions}},
     journal = {Les rencontres physiciens-math\'ematiciens de Strasbourg -RCP25},
     note = {talk:3},
     pages = {1--26},
     publisher = {Institut de Recherche Math\'ematique Avanc\'ee - Universit\'e Louis Pasteur},
     volume = {14},
     year = {1972},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RCP25_1972__14__A3_0/}
}
TY  - JOUR
AU  - Thirring, Walter
TI  - Free Energy of Gravitating Fermions
JO  - Les rencontres physiciens-mathématiciens de Strasbourg -RCP25
N1  - talk:3
PY  - 1972
SP  - 1
EP  - 26
VL  - 14
PB  - Institut de Recherche Mathématique Avancée - Université Louis Pasteur
UR  - http://geodesic.mathdoc.fr/item/RCP25_1972__14__A3_0/
LA  - en
ID  - RCP25_1972__14__A3_0
ER  - 
%0 Journal Article
%A Thirring, Walter
%T Free Energy of Gravitating Fermions
%J Les rencontres physiciens-mathématiciens de Strasbourg -RCP25
%Z talk:3
%D 1972
%P 1-26
%V 14
%I Institut de Recherche Mathématique Avancée - Université Louis Pasteur
%U http://geodesic.mathdoc.fr/item/RCP25_1972__14__A3_0/
%G en
%F RCP25_1972__14__A3_0
Thirring, Walter. Free Energy of Gravitating Fermions. Les rencontres physiciens-mathématiciens de Strasbourg -RCP25, Conférences de J. Bros, P. Schapira et W. Thirring et un texte de R. Gérard et A.H.M. Levelt, Tome 14 (1972), Exposé no. 3, 26 p. http://geodesic.mathdoc.fr/item/RCP25_1972__14__A3_0/

1) F.J. Dyson in Statistical Physics, Phase transitions and Superfluidity, 1966 Brandeis University Suramer School in Theoretical Physics, lecture notes ;

F.J. Dyson and A. Lenard, J.Math.Phys. 8 (1967) 423 | Zbl | MR

2) J.L. Lebowitz and E. H. Lieb, Phys. Rev. Letter 22. (1969) 631

3) J.-M. Lévy-Leblond, J.Math.Phys. 10 (1969) 806.

4) W. Thirring, Z. Phys. 235 (1970) 339;

P. Hertel and W. Thirring, Annals of Physics 63 (1971).

5) P. Hertel and W. Thirring, CEEN preprint TH. 1338 (1971). | MR

6) A typical "neutron star" of 10 57 particles at a temperature of 5 MeV and enclosed into a sphere of 100 km radius corresponds to (λN,λ -4/3 β,λ -1/3 R) with N=1, β=60 2 κ -2 m N -5 , R=29 2 κ -1 m N -1 and λ=10 57 . Since N, S and R are of order unity (if measured in their natural units) and since λ=10 57 is sufficiently large, we will describe the above "neutron star" by the limit λ. For N=1057, β=(5MeV) -1 and R=100 km we would have reached the same accuracy for λ=1.

7) T. Kato, Perturbation theory for linear operators, Berlin, Springer 1966. There the infinite volume case is studied, however, the result also holds for finite volume. | Zbl

8) H.D. Maison, Analyticity of the partition function for finite quantum Systems, CERN preprint TH. 1299 (1971). | Zbl | MR

9) J. Dieudonné, Eléments d'analyse, Tome I, Paris, Gauthier-Villars 1969. | Zbl

10) B. Simon, J.Math.Phys. 10 (1969) 1123. Again this estimate for infinité volume is a fortiori also valid for finite volume. | MR

11) D. Ruelle, Statistical mechanics - rigorous results, New York, Benjamin 1961. | Zbl | MR

12) N.N. Bogoliubov Jr., Physica 32 (1966) 933. | MR

13) J. Ginibre, Commun.Math.Phys. 8 (1968) 26. | Zbl | MR