Categories of results in variable Lebesgue spaces theory
Rendiconto della Accademia delle scienze fisiche e matematiche, Série 4, Tome 86 (2019) no. 1, pp. 79-102.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

Variable (exponent) Lebesgue spaces represent a relevant research area within the theory of Banach function spaces. Much attention is devoted to look for sufficient conditions on the variable exponent to establish the assertions within the theory. In this Note we try to show the beauty of the research in this field, mainly quoting some known results organized into “categories", each of them characterized by a common typology of conditions on the variable exponent. New results involve the failure of rearrangement-invariant property, the rearrangement of the exponent, and a generalization of a formula known for constant exponents. Riassunto – Gli spazi di Lebesgue con esponente variabile rappresentano un set
Gli spazi di Lebesgue con esponente variabile rappresentano un settore di rilievo nell’ambito della teoria degli spazi funzionali di Banach. Di notevole interesse è la ricerca di condizioni, da imporre alla funzione esponente, sufficienti ad assicurare il verificarsi di determinate affermazioni. In questa Nota ci proponiamo di mostrare il fascino della ricerca in questo settore, segnalando essenzialmente alcuni noti risultati organizzati in “categorie", ognuna delle quali caratterizzata da una comune tipologia di condizioni sulla funzione esponente. I risultati originali sono relativi alla non invarianza per riordinamento, al riordinamento dell’esponente e ad una generalizzazione di una formula nota per esponenti costanti.
@article{RASFM_2019_4_86_1_a0,
     author = {Fiorenza, Alberto},
     title = {Categories of results in variable {Lebesgue} spaces theory},
     journal = {Rendiconto della Accademia delle scienze fisiche e matematiche},
     pages = {79--102},
     publisher = {mathdoc},
     volume = {Ser. 4, 86},
     number = {1},
     year = {2019},
     zbl = {1017.76098},
     mrnumber = {1905047},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RASFM_2019_4_86_1_a0/}
}
TY  - JOUR
AU  - Fiorenza, Alberto
TI  - Categories of results in variable Lebesgue spaces theory
JO  - Rendiconto della Accademia delle scienze fisiche e matematiche
PY  - 2019
SP  - 79
EP  - 102
VL  - 86
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RASFM_2019_4_86_1_a0/
LA  - en
ID  - RASFM_2019_4_86_1_a0
ER  - 
%0 Journal Article
%A Fiorenza, Alberto
%T Categories of results in variable Lebesgue spaces theory
%J Rendiconto della Accademia delle scienze fisiche e matematiche
%D 2019
%P 79-102
%V 86
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RASFM_2019_4_86_1_a0/
%G en
%F RASFM_2019_4_86_1_a0
Fiorenza, Alberto. Categories of results in variable Lebesgue spaces theory. Rendiconto della Accademia delle scienze fisiche e matematiche, Série 4, Tome 86 (2019) no. 1, pp. 79-102. http://geodesic.mathdoc.fr/item/RASFM_2019_4_86_1_a0/

[1] E. Acerbi and G. Mingione. Regularity results for electrorheological fluids: the stationary case. C. R. Math. Acad. Sci. Paris, 334(9):817–822, 2002. | DOI | MR | Zbl

[2] E. Acerbi and G. Mingione. Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal., 164(3):213–259, 2002. | DOI | MR | Zbl

[3] E. Acerbi and G. Mingione. Gradient estimates for the $p(x)$-Laplacean system. J. Reine Angew. Math., 584:117–148, 2005. | DOI | MR | Zbl

[4] Y. Ahmida, I. Chlebicka, P. Gwiazda, and A. Youssfi. Gossez’s approximation theorems in Musielak-Orlicz-Sobolev spaces. J. Funct. Anal., 275(9):2538–2571, 2018. | DOI | MR | Zbl

[5] A. Almeida, L. Diening, and P. Hästö. Homogeneous variable exponent Besov and Triebel- Lizorkin spaces. Math. Nachr., 291(8-9):1177–1190, 2018. | DOI | MR | Zbl

[6] B. Amaziane, L. Pankratov, and A. Piatnitski. Nonlinear flow through double porosity media in variable exponent Sobolev spaces. Nonlinear Anal. Real World Appl., 10(4):2521–2530, 2009. | DOI | MR | Zbl

[7] L. Ambrosio, N. Fusco, and D. Pallara. Functions of bounded variation and free discontinu- ity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. | MR | Zbl

[8] G. Anatriello, R. Chill, and A. Fiorenza. Identification of fully measurable grand Lebesgue spaces. J. Funct. Spaces, pages 3, Art. ID 3129186, 2017. | DOI | MR | Zbl

[9] G. Anatriello, A. Fiorenza, and G. Vincenzi. Banach function norms via Cauchy polynomials and applications. Internat. J. Math., 26(10), pages 20, 1550083, 2015. | DOI | MR | Zbl

[10] S. N. Antontsev and S. I. Shmarev. Evolution PDEs with nonstandard growth conditions, volume 4 of Atlantis Studies in Differential Equations. Existence, uniqueness, localization, blow-up. Atlantis Press, Paris, 2015. | DOI | MR | Zbl

[11] S. N. Antontsev and S. I. Shmarev. A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Anal., 60(3):515–545, 2005. | DOI | MR | Zbl

[12] P. Baroni, M. Colombo, and G. Mingione. Nonautonomous functionals, borderline cases and related function classes. Algebra i Analiz, 27(3):6–50, 2015. | DOI | MR | Zbl

[13] P. Baroni, M. Colombo, and G. Mingione. Harnack inequalities for double phase functionals. Nonlinear Anal., 121:206–222, 2015. | DOI | MR | Zbl

[14] D. Baruah, P. Harjulehto, and P. Hästö. Capacities in generalized Orlicz spaces. J. Funct. Spaces, pages 10, Art. ID 8459874, 2018. | DOI | MR | Zbl

[15] C. Bennett and R. Sharpley. Interpolation of Operators, volume 129 of Pure and Applied Mathematics. Academic Press Inc., Boston, MA, 1988. | MR | Zbl

[16] Z. W. Birnbaum and W. Orlicz. Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen. Stud. Math., 3:1–67, 1931. | fulltext EuDML | Zbl

[17] P. Blomgren, T. Chan, P. Mulet, and C. K. Wong. Total variation image restoration: numerical methods and extensions. In Proceedings of the 1997 IEEE International Conference on Image Processing, volume III, pages 384–387, 1997. | MR

[18] H. Brezis. Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris, 1983. Théorie et applications.[Theory and applications]. | MR

[19] H. Brezis. Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011. | MR | Zbl

[20] C. Capone, D. Cruz-Uribe, and A. Fiorenza. The fractional maximal operator and fractional integrals on variable $L^p$ spaces. Rev. Mat. Iberoam., 23(3):743–770, 2007. | fulltext EuDML | DOI | MR | Zbl

[21] R. E. Castillo and H. Rafeiro. An introductory course in Lebesgue spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, [Cham], 2016. | DOI | MR | Zbl

[22] B. Çekiç, A. V. Kalinin, R. A. Mashiyev, and M. Avci. $l^{p(x)}(\Omega)$-estimates for vector fields and some applications to magnetostatics problems. J. Math. Anal. Appl., 389(2):838–851, 2012. | DOI | MR | Zbl

[23] M. Colombo and G. Mingione. Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal., 218(1):219–273, 2015. | DOI | MR | Zbl

[24] D. Cruz-Uribe, L. Diening, and A. Fiorenza. A new proof of the boundedness of maximal operators on variable Lebesgue spaces. Boll. Unione Mat. Ital. (9), 2(1):151–173, 2009. | fulltext bdim | fulltext EuDML | MR | Zbl

[25] D. Cruz-Uribe, G. Di Fratta, and A. Fiorenza. Modular inequalities for the maximal operator in variable Lebesgue spaces. Nonlinear Anal., 177(part A):299–311, 2018. | DOI | MR | Zbl

[26] D. Cruz-Uribe and A. Fiorenza. Approximate identities in variable $L^p$ spaces. Math. Nachr., 280(3):256–270, 2007. | DOI | MR | Zbl

[27] D. V. Cruz-Uribe and A. Fiorenza. Variable Lebesgue spaces. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Heidelberg, 2013. Foundations and harmonic analysis. | DOI | MR | Zbl

[28] D. Cruz-Uribe, A. Fiorenza, J. M. Martell, and C. Pérez. The boundedness of classical operators on variable $L^p$ spaces. Ann. Acad. Sci. Fenn. Math., 31(1):239–264, 2006. | fulltext EuDML | MR | Zbl

[29] D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer. The maximal function on variable $L^p$ spaces. Ann. Acad. Sci. Fenn. Math., 28(1):223–238, 2003. See also errata [30]. | fulltext EuDML | MR | Zbl

[30] D. Cruz-Uribe, A. Fiorenza, and C. J. Neugebauer. Corrections to: “The maximal function on variable $L^p$ spaces” [Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 1, 223–238; ]. Ann. Acad. Sci. Fenn. Math., 29(1):247–249, 2004. | fulltext EuDML | MR | Zbl

[31] D. V. Cruz-Uribe, A. Fiorenza, M. Ruzhansky, and J. Wirth. Variable Lebesgue spaces and hyperbolic systems. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser/Springer, Basel, 2014. Selected lecture notes from the Advanced Courses on Approximation Theory and Fourier Analysis held at the Centre de Recerca Matemàtica, Barcelona, November 7–11, 2011, Edited by Sergey Tikhonov. | MR

[32] D. Cruz-Uribe and P. Hästö. Extrapolation and interpolation in generalized Orlicz spaces. Trans. Amer. Math. Soc., 370(6):4323–4349, 2018. | DOI | MR | Zbl

[33] D. Cruz-Uribe, J. M. Martell, and C. Pérez. Weights, extrapolation and the theory of Rubio de Francia, volume 215 of Operator Theory: Advances and Applications. Birkhäuser/Springer, [Cham], 2011. | DOI | MR | Zbl

[34] A. M. D’Aristotile and A. Fiorenza. A topology on inequalities. Electron. J. Differential Equations, pages 22, No. 85, 2006. | fulltext EuDML | MR | Zbl

[35] E. Dibenedetto. Real analysis. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Boston, Inc., Boston, MA, 2002. | DOI | MR

[36] L. Diening. Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$. Math. Inequal. Appl., 7(2):245–253, 2004. | DOI | MR | Zbl

[37] L. Diening. Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math., 129(8):657–700, 2005. | DOI | MR | Zbl

[38] L. Diening. Lebesgue and Sobolev Spaces with Variable Exponent. Habilitation, Universität Freiburg, 2007.

[39] L. Diening, P. Harjulehto, P. Hästö, and M. Růžička. Lebesgue and Sobolev spaces with variable exponents, volume 2017 of Lecture Notes in Mathematics. Springer, Heidelberg, 2011. | DOI | MR | Zbl

[40] L. Diening and M. Růžička. Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot)}$ and problems related to fluid dynamics. J. Reine Angew. Math., 563:197–220, 2003. | DOI | MR | Zbl

[41] L. Diening and M. Růžička. Integral operators on the halfspace in generalized Lebesgue spaces $L^{p(\cdot)}$. I. J. Math. Anal. Appl., 298(2):559–571, 2004. | DOI | MR | Zbl

[42] L. Diening and M. Růžička. Integral operators on the halfspace in generalized Lebesgue spaces $L^{p(\cdot)}$. II. J. Math. Anal. Appl., 298(2):572–588, 2004. | DOI | MR | Zbl

[43] L. Diening and M. Růžička. Non-Newtonian fluids and function spaces. In NAFSA 8— Nonlinear analysis, function spaces and applications. Vol. 8, pages 94–143. Czech. Acad. Sci., Prague, 2007. | fulltext EuDML | MR | Zbl

[44] L. Diening, P. Harjulehto, P. Hästö, Y. Mizuta, and T. Shimomura. Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann. Acad. Sci. Fenn. Math., 34(2):503–522, 2009. | MR | Zbl

[45] J. Duoandikoetxea. Fourier Analysis, volume 29 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001. Translated and revised from the 1995 Spanish original by David Cruz-Uribe. | DOI | MR | Zbl

[46] D. E. Edmunds, J. Lang, and O. Méndez. Differential operators on spaces of variable integrability. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014. | DOI | MR | Zbl

[47] D. E. Edmunds, J. Lang, and A. Nekvinda. On $L^{p(x)}$ norms. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455(1981):219–225, 1999. | DOI | MR | Zbl

[48] D. E. Edmunds and A. Meskhi. Potential-type operators in $L^{p(x)}$ spaces. Z. Anal. Anwendungen, 21(3):681–690, 2002. | DOI | MR | Zbl

[49] D. E. Edmunds and J. Rákosník. Density of smooth functions in $W^{k,p(x)}(\Omega)$. Proc. Roy. Soc. London Ser. A, 437(1899):229–236, 1992. | DOI | MR | Zbl

[50] A. El Hamidi. Existence results to elliptic systems with nonstandard growth conditions. J. Math. Anal. Appl., 300(1):30–42, 2004. | DOI | MR | Zbl

[51] P. Hästö. The maximal operator on generalized Orlicz spaces. J. Funct. Anal., 269(12):4038–4048, 2015. See also corrigendum [52]. | DOI | MR | Zbl

[52] P. Hästö. Corrigendum to “The maximal operator on generalized Orlicz spaces" [J. Funct. Anal. 269 (2015) 4038–4048]. J. Funct. Anal., 271(1):240–243, 2016. | DOI | MR | Zbl

[53] K. J. Falconer. The geometry of fractal sets, volume 85 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1986. | MR | Zbl

[54] X. Fan. The regularity of Lagrangians $f(x, \xi ) = |\xi|^{\alpha(x)}$ with Hölder exponents $\alpha(x)$. Acta Math. Sinica (N.S.), 12(3):254–261, 1996. A Chinese summary appears in Acta Math. Sinica 40 (1997), no. 1, 158. | MR | Zbl

[55] X. Fan. Regularity of nonstandard Lagrangians $f(x, \xi )$. Nonlinear Anal., 27(6):669–678, 1996. | DOI | MR | Zbl

[56] X. Fan. $p(x)$-Laplacian equations. In Topological methods, variational methods and their applications (Taiyuan, 2002), pages 117–123. World Sci. Publ., River Edge, NJ, 2003. | MR | Zbl

[57] X. Fan, S. Wang, and D. Zhao. Density of $C^{\infty}(\Omega)$ in $W^{1,p(x)}(\Omega)$ with discontinuous exponent $p(x)$. Math. Nachr., 279(1-2):142–149, 2006. | DOI | MR | Zbl

[58] X. Fan and D. Zhao. Regularity of minimizers of variational integrals with continuous $p(x)$-growth conditions. Chinese J. Contemp. Math., 17(4):327–336, 1996. | MR

[59] X. Fan and D. Zhao. Regularity of minimum points of variational integrals with continuous $p(x)$-growth conditions. Chinese Ann. Math. Ser. A, 17(5):557–564, 1996. | MR | Zbl

[60] R. Ferreira, P. Hästö, and A. M. Ribeiro. Characterization of generalized Orlicz spaces. arXiv e-prints, arXiv:1612.04566, December 2016. | Zbl

[61] A. Fiorenza. A mean continuity type result for certain Sobolev spaces with variable exponent. Commun. Contemp. Math., 4(3):587–605, 2002. | DOI | MR | Zbl

[62] A. Fiorenza. A local estimate for the maximal function in Lebesgue spaces with EXP-type exponents. J. Funct. Spaces, pages 5, Art. ID 581064, 2015. | DOI | MR | Zbl

[63] A. Fiorenza, V. Kokilashvili, and A. Meskhi. Hardy-Littlewood maximal operator in weighted grand variable exponent Lebesgue space. Mediterr. J. Math., 14(3), pages 20, Art. 118, 2017. | DOI | MR | Zbl

[64] A. Fiorenza and M. Krbec. A note on noneffective weights in variable Lebesgue spaces. J. Funct. Spaces Appl., pages 5, Art. ID 853232, 2012. | DOI | MR | Zbl

[65] A. Fiorenza and J. M. Rakotoson. Relative rearrangement and Lebesgue spaces $L^{p(\cdot)}$ with variable exponent. J. Math. Pures Appl. (9), 88(6):506–521, 2007. | DOI | MR | Zbl

[66] A. Fiorenza, J. M. Rakotoson, and C. Sbordone. Variable exponents and grand Lebesgue spaces: some optimal results. Commun. Contemp. Math., 17(6):1550023, 14, 2015. | DOI | MR | Zbl

[67] F. Giannetti. The modular interpolation inequality in Sobolev spaces with variable exponent attaining the value 1. Math. Inequal. Appl., 14(3):509–522, 2011. | DOI | MR | Zbl

[68] P. Harjulehto and P. Hästö. Orlicz spaces and generalized Orlicz spaces. 2018. | Zbl

[69] P. Harjulehto, P. Hästö, Ú. V. Lê, and M. Nuortio. Overview of differential equations with non-standard growth. Nonlinear Anal., 72(12):4551–4574, 2010. | DOI | MR | Zbl

[70] P. Hästö. On the density of continuous functions in variable exponent Sobolev space. Rev. Mat. Iberoam., 23(1):213–234, 2007. | fulltext EuDML | DOI | MR | Zbl

[71] P. Hästö and A. M. Ribeiro. Characterization of the variable exponent Sobolev norm without derivatives. Commun. Contemp. Math., 19(3):1650022, 13, 2017. | DOI | MR | Zbl

[72] M. Izuki, E. Nakai, and Y. Sawano. Function spaces with variable exponents—an introduction—. Sci. Math. Jpn., 77(2):187–315, 2014. | MR | Zbl

[73] B. Kawohl. Rearrangements and convexity of level sets in PDE, volume 1150 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1985. | DOI | MR | Zbl

[74] H. Kempka and J. Vybíral. Lorentz spaces with variable exponents. Math. Nachr., 287(8-9):938–954, 2014. | DOI | MR | Zbl

[75] V. Kokilashvili and M. Krbec. Weighted Inequalities in Lorentz and Orlicz Spaces. World Scientific Publishing Co. Inc., River Edge, NJ, 1991. | DOI | MR | Zbl

[76] V. Kokilashvili, A. Meskhi, H. Rafeiro, and S. Samko. Integral operators in non-standard function spaces. Vol. 1, volume 248 of Operator Theory: Advances and Applications. Variable exponent Lebesgue and amalgam spaces. Birkhäuser/Springer, [Cham], 2016. | MR | Zbl

[77] V. Kokilashvili, A. Meskhi, H. Rafeiro, and S. Samko. Integral operators in non-standard function spaces. Vol. 2, volume 249 of Operator Theory: Advances and Applications. Variable exponent Hölder, Morrey-Campanato and grand spaces. Birkhäuser/Springer, [Cham], 2016. | DOI | MR | Zbl

[78] A. N. Kolmogorov. Zur Normierbarkeit eines allgemeinen topologischen linearen Räumes. Studia Math., 5:29–33, 1934. | fulltext EuDML | Zbl

[79] T. Kopaliani. On the Muckenchaupt condition in variable Lebesgue spaces. Proc. A. Razmadze Math. Inst., 148:29–33, 2008. | MR | Zbl

[80] T. Kopaliani and G. Chelidze. Gagliardo-Nirenberg type inequality for variable exponent Lebesgue spaces. J. Math. Anal. Appl., 356(1):232–236, 2009. | DOI | MR | Zbl

[81] A. Korenovskii. Mean oscillations and equimeasurable rearrangements of functions, volume 4 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin; UMI, Bologna, 2007. | DOI | MR | Zbl

[82] T. Kostopoulos and N. Yannakakis. Density of smooth functions in variable exponent Sobolev spaces. Nonlinear Anal., 127:196–205, 2015. | DOI | MR | Zbl

[83] O. Kováčik and J. Rákosník. On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czechoslovak Math. J., 41(116)(4):592–618, 1991. | fulltext EuDML | MR | Zbl

[84] M. A. Krasnosel'Skiĭ and Ja. B. Rutickiĭ. Convex Functions and Orlicz Spaces. Translated from the first Russian edition by Leo F. Boron. P. Noordhoff Ltd., Groningen, 1961. | MR

[85] J. Lang and D. Edmunds. Eigenvalues, embeddings and generalised trigonometric functions, volume 2016 of Lecture Notes in Mathematics. Springer, Heidelberg, 2011. | DOI | MR | Zbl

[86] G. Leoni. A first course in Sobolev spaces, volume 181 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2017. | DOI | MR | Zbl

[87] A. K. Lerner. On modular inequalities in variable $L^p$ spaces. Arch. Math. (Basel), 85(6):538–543, 2005. | DOI | MR | Zbl

[88] A. K. Lerner. On some questions related to the maximal operator on variable $L^p$ spaces. Trans. Amer. Math. Soc., 362(8):4229–4242, 2010. | DOI | MR | Zbl

[89] A. K. Lerner and C. Pérez. A new characterization of the Muckenhoupt $A_p$ weights through an extension of the Lorentz-Shimogaki theorem. Indiana Univ. Math. J., 56(6):2697–2722, 2007. | DOI | MR | Zbl

[90] E. H. Lieb and M. Loss. Analysis, volume 14 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2001. | DOI | MR

[91] L. Maligranda. Orlicz spaces and interpolation, volume 5 of Seminários de Matemática [Seminars in Mathematics]. Universidade Estadual de Campinas, Departamento de Matemática, Campinas, 1989. | MR | Zbl

[92] P. Marcellini. Regularity and existence of solutions of elliptic equations with p, q-growth conditions. J. Differential Equations, 90(1):1–30, 1991. | DOI | MR | Zbl

[93] P. Marcellini. Regularity for elliptic equations with general growth conditions. J. Differential Equations, 105(2):296–333, 1993. | DOI | MR | Zbl

[94] A. Mercaldo, J. D. Rossi, S. Segura De León, and C. Trombetti. On the behaviour of solutions to the Dirichlet problem for the $p(x)$-Laplacian when $p(x)$ goes to 1 in a subdomain. Differential Integral Equations, 25(1-2):53–74, 2012. | MR | Zbl

[95] A. Meskhi. Measure of non-compactness for integral operators in weighted Lebesgue spaces. Nova Science Publishers, Inc., New York, 2009. | MR | Zbl

[96] G. Mingione. Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math., 51(4):355–426, 2006. | fulltext EuDML | DOI | MR | Zbl

[97] J. Musielak. Orlicz Spaces and Modular Spaces, volume 1034 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1983. | DOI | MR | Zbl

[98] H. Nakano. Modulared Semi-Ordered Linear Spaces. Maruzen Co. Ltd., Tokyo, 1950. | MR | Zbl

[99] H. Nakano. Topology and Linear Topological Spaces. Maruzen Co. Ltd., Tokyo, 1951. | MR

[100] A. Nekvinda. Hardy-Littlewood maximal operator on $L^{p(x)}(\mathbb{R}^n)$. Math. Inequal. Appl., 7(2):255–265, 2004. | DOI | MR | Zbl

[101] A. Nekvinda. Maximal operator on variable Lebesgue spaces for almost monotone radial exponent. J. Math. Anal. Appl., 337(2):1345–1365, 2008. | DOI | MR | Zbl

[102] G. O. Okikiolu. Aspects of the Theory of Bounded Integral Operators in $L^p$−Spaces. Academic Press, London - New York, 1971. | MR | Zbl

[103] W. Orlicz. Über konjugierte Exponentenfolgen. Stud. Math., 3:200–211, 1931. | fulltext EuDML | Zbl

[104] L. Pick, A. Kufner, O. John, and S. Fučík. Function spaces. Vol. 1, volume 14 of De Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin, extended edition, 2013. | MR | Zbl

[105] L. Pick and M. Růžička. An example of a space $L^{p(x)}$ on which the Hardy-Littlewood maximal operator is not bounded. Expo. Math., 19(4):369–371, 2001. | DOI | MR | Zbl

[106] V. D. Rădulescu and D. D. Repovš. Partial differential equations with variable exponents. Variational methods and qualitative analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015. | DOI | MR

[107] J. M. Rakotoson. Réarrangement Relatif, volume 64 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin, 2008. | DOI | MR

[108] M. M. Rao and Z. D. Ren. Theory of Orlicz spaces, volume 146 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1991. | MR | Zbl

[109] B. Ross and S. Samko. Fractional integration operator of variable order in the Hölder spaces $H^{\lambda(x)}$. Internat. J. Math. Math. Sci., 18(4):777–788, 1995. | fulltext EuDML | DOI | MR | Zbl

[110] W. Rudin. Real and Complex Analysis. McGraw-Hill Book Co., New York, third edition, 1987. | MR | Zbl

[111] M. Růžička. Electrorheological fluids: modeling and mathematical theory, volume 1748 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2000. | DOI | MR | Zbl

[112] M. Růžička. Modeling, mathematical and numerical analysis of electrorheological fluids. Appl. Math., 49(6):565–609, 2004. | fulltext EuDML | DOI | MR | Zbl

[113] S. Samko. Fractional integration and differentiation of variable order. Anal. Math., 21(3):213–236, 1995. | DOI | MR | Zbl

[114] S. Samko. Convolution and potential type operators in $L^{p(x)}(\mathbb{R}^n)$. Integral Transform. Spec. Funct., 7(3-4):261–284, 1998. | DOI | MR | Zbl

[115] S. Samko. Convolution type operators in $L^{p(x)}$. Integral Transform. Spec. Funct., 7(1- 2):123–144, 1998. | DOI | MR | Zbl

[116] S. Samko. Differentiation and integration of variable order and the spaces $L^{p(x)}$. In Operator theory for complex and hypercomplex analysis (Mexico City, 1994), volume 212 of Contemp. Math., pages 203–219. Amer. Math. Soc., Providence, RI, 1998. | DOI | MR | Zbl

[117] S. Samko. Denseness of $C_0^\infty(\mathbb{R}N$ in the generalized Sobolev spaces $W^{M,P(X)}(\mathbb{R}^N)$. In Direct and inverse problems in mathematical physics (Newark, DE, 1997), volume 5 of Int. Soc. Anal. Appl. Comput., pages 333–342. Kluwer Acad. Publ., Dordrecht, 2000. | DOI | MR

[118] S. Samko and B. Ross. Integration and differentiation to a variable fractional order. Integral Transform. Spec. Funct., 1(4):277–300, 1993. | DOI | MR | Zbl

[119] I. I. Sharapudinov. The topology of the space $\mathcal{L}^p(t)([0, 1])$. Mat. Zametki, 26(4):613–632, 655, 1979. | MR

[120] I. I. Sharapudinov. The basis property of the Haar system in the space $\mathcal{L}^p(t)([0, 1])$ and the principle of localization in the mean. Mat. Sb. (N.S.), 130(172)(2):275–283, 286, 1986. | fulltext EuDML | DOI | MR

[121] E. M. Stein. Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970. | MR | Zbl

[122] E. M. Stein. Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, volume 43 of Princeton Mathematical Series. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993. | MR | Zbl

[123] I. V. Tsenov. Generalization of the problem of best approximation of a function in the space $L^s$. Uch. Zap. Dagestan. Gos. Univ., 7:25–37, 1961.

[124] V. V. Zhikov. Problems of convergence, duality, and averaging for a class of functionals of the calculus of variations. Dokl. Akad. Nauk SSSR, 267(3):524–528, 1982. | MR

[125] V. V. Zhikov. Meyer-type estimates for solving the nonlinear Stokes system. Differ. Uravn., 33(1):107–114, 143, 1997. | MR

[126] V. V. Zhikov. On some variational problems. Russian J. Math. Phys., 5(1):105–116 (1998), 1997. | MR | Zbl

[127] V. V. Zhikov. On the density of smooth functions in Sobolev-Orlicz spaces. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310(Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35 [34]):67–81, 226, 2004. | fulltext EuDML | DOI | MR | Zbl

[128] W. P. Ziemer. Weakly Differentiable Functions, volume 120 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1989. | DOI | MR | Zbl