Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RASFM_2019_4_86_1_a0, author = {Fiorenza, Alberto}, title = {Categories of results in variable {Lebesgue} spaces theory}, journal = {Rendiconto della Accademia delle scienze fisiche e matematiche}, pages = {79--102}, publisher = {mathdoc}, volume = {Ser. 4, 86}, number = {1}, year = {2019}, zbl = {1017.76098}, mrnumber = {1905047}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RASFM_2019_4_86_1_a0/} }
TY - JOUR AU - Fiorenza, Alberto TI - Categories of results in variable Lebesgue spaces theory JO - Rendiconto della Accademia delle scienze fisiche e matematiche PY - 2019 SP - 79 EP - 102 VL - 86 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RASFM_2019_4_86_1_a0/ LA - en ID - RASFM_2019_4_86_1_a0 ER -
Fiorenza, Alberto. Categories of results in variable Lebesgue spaces theory. Rendiconto della Accademia delle scienze fisiche e matematiche, Série 4, Tome 86 (2019) no. 1, pp. 79-102. http://geodesic.mathdoc.fr/item/RASFM_2019_4_86_1_a0/
[1] Regularity results for electrorheological fluids: the stationary case. C. R. Math. Acad. Sci. Paris, 334(9):817–822, 2002. | DOI | MR | Zbl
and .[2] Regularity results for stationary electro-rheological fluids. Arch. Ration. Mech. Anal., 164(3):213–259, 2002. | DOI | MR | Zbl
and .[3] Gradient estimates for the $p(x)$-Laplacean system. J. Reine Angew. Math., 584:117–148, 2005. | DOI | MR | Zbl
and .[4] s approximation theorems in Musielak-Orlicz-Sobolev spaces. J. Funct. Anal., 275(9):2538–2571, 2018. | DOI | MR | Zbl
, , , and . Gossez’[5] Homogeneous variable exponent Besov and Triebel- Lizorkin spaces. Math. Nachr., 291(8-9):1177–1190, 2018. | DOI | MR | Zbl
, , and .[6] Nonlinear flow through double porosity media in variable exponent Sobolev spaces. Nonlinear Anal. Real World Appl., 10(4):2521–2530, 2009. | DOI | MR | Zbl
, , and .[7] Functions of bounded variation and free discontinu- ity problems. Oxford Mathematical Monographs. The Clarendon Press, Oxford University Press, New York, 2000. | MR | Zbl
, , and .[8] Identification of fully measurable grand Lebesgue spaces. J. Funct. Spaces, pages 3, Art. ID 3129186, 2017. | DOI | MR | Zbl
, , and .[9] Banach function norms via Cauchy polynomials and applications. Internat. J. Math., 26(10), pages 20, 1550083, 2015. | DOI | MR | Zbl
, , and .[10] Evolution PDEs with nonstandard growth conditions, volume 4 of Atlantis Studies in Differential Equations. Existence, uniqueness, localization, blow-up. Atlantis Press, Paris, 2015. | DOI | MR | Zbl
and .[11] A model porous medium equation with variable exponent of nonlinearity: existence, uniqueness and localization properties of solutions. Nonlinear Anal., 60(3):515–545, 2005. | DOI | MR | Zbl
and .[12] Nonautonomous functionals, borderline cases and related function classes. Algebra i Analiz, 27(3):6–50, 2015. | DOI | MR | Zbl
, , and .[13] Harnack inequalities for double phase functionals. Nonlinear Anal., 121:206–222, 2015. | DOI | MR | Zbl
, , and .[14] Capacities in generalized Orlicz spaces. J. Funct. Spaces, pages 10, Art. ID 8459874, 2018. | DOI | MR | Zbl
, , and .[15] Interpolation of Operators, volume 129 of Pure and Applied Mathematics. Academic Press Inc., Boston, MA, 1988. | MR | Zbl
and .[16] Über die Verallgemeinerung des Begriffes der zueinander konjugierten Potenzen. Stud. Math., 3:1–67, 1931. | fulltext EuDML | Zbl
and .[17] Total variation image restoration: numerical methods and extensions. In Proceedings of the 1997 IEEE International Conference on Image Processing, volume III, pages 384–387, 1997. | MR
, , , and .[18] Analyse fonctionnelle. Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree]. Masson, Paris, 1983. Théorie et applications.[Theory and applications]. | MR
.[19] Functional analysis, Sobolev spaces and partial differential equations. Universitext. Springer, New York, 2011. | MR | Zbl
.[20] The fractional maximal operator and fractional integrals on variable $L^p$ spaces. Rev. Mat. Iberoam., 23(3):743–770, 2007. | fulltext EuDML | DOI | MR | Zbl
, , and .[21] An introductory course in Lebesgue spaces. CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC. Springer, [Cham], 2016. | DOI | MR | Zbl
and .[22] $l^{p(x)}(\Omega)$-estimates for vector fields and some applications to magnetostatics problems. J. Math. Anal. Appl., 389(2):838–851, 2012. | DOI | MR | Zbl
, , , and .[23] Bounded minimisers of double phase variational integrals. Arch. Ration. Mech. Anal., 218(1):219–273, 2015. | DOI | MR | Zbl
and .[24] A new proof of the boundedness of maximal operators on variable Lebesgue spaces. Boll. Unione Mat. Ital. (9), 2(1):151–173, 2009. | fulltext bdim | fulltext EuDML | MR | Zbl
, , and .[25] Modular inequalities for the maximal operator in variable Lebesgue spaces. Nonlinear Anal., 177(part A):299–311, 2018. | DOI | MR | Zbl
, , and .[26] Approximate identities in variable $L^p$ spaces. Math. Nachr., 280(3):256–270, 2007. | DOI | MR | Zbl
and .[27] Variable Lebesgue spaces. Applied and Numerical Harmonic Analysis. Birkhäuser/Springer, Heidelberg, 2013. Foundations and harmonic analysis. | DOI | MR | Zbl
and .[28] The boundedness of classical operators on variable $L^p$ spaces. Ann. Acad. Sci. Fenn. Math., 31(1):239–264, 2006. | fulltext EuDML | MR | Zbl
, , and .[29] The maximal function on variable $L^p$ spaces. Ann. Acad. Sci. Fenn. Math., 28(1):223–238, 2003. See also errata [30]. | fulltext EuDML | MR | Zbl
, and .[30] Corrections to: “The maximal function on variable $L^p$ spaces” [Ann. Acad. Sci. Fenn. Math. 28 (2003), no. 1, 223–238; ]. Ann. Acad. Sci. Fenn. Math., 29(1):247–249, 2004. | fulltext EuDML | MR | Zbl
e, and .[31] spaces and hyperbolic systems. Advanced Courses in Mathematics. CRM Barcelona. Birkhäuser/Springer, Basel, 2014. Selected lecture notes from the Advanced Courses on Approximation Theory and Fourier Analysis held at the Centre de Recerca Matemàtica, Barcelona, November 7–11, 2011, Edited by Sergey Tikhonov. | MR
, , and . e[32] Extrapolation and interpolation in generalized Orlicz spaces. Trans. Amer. Math. Soc., 370(6):4323–4349, 2018. | DOI | MR | Zbl
and .[33] Weights, extrapolation and the theory of Rubio de Francia, volume 215 of Operator Theory: Advances and Applications. Birkhäuser/Springer, [Cham], 2011. | DOI | MR | Zbl
, and .[34] A topology on inequalities. Electron. J. Differential Equations, pages 22, No. 85, 2006. | fulltext EuDML | MR | Zbl
and .[35] Real analysis. Birkhäuser Advanced Texts: Basler Lehrbücher. [Birkhäuser Advanced Texts: Basel Textbooks]. Birkhäuser Boston, Inc., Boston, MA, 2002. | DOI | MR
.[36] Maximal function on generalized Lebesgue spaces $L^{p(\cdot)}$. Math. Inequal. Appl., 7(2):245–253, 2004. | DOI | MR | Zbl
.[37] Maximal function on Musielak-Orlicz spaces and generalized Lebesgue spaces. Bull. Sci. Math., 129(8):657–700, 2005. | DOI | MR | Zbl
.[38] Lebesgue and Sobolev Spaces with Variable Exponent. Habilitation, Universität Freiburg, 2007.
.[39] Lebesgue and Sobolev spaces with variable exponents, volume 2017 of Lecture Notes in Mathematics. Springer, Heidelberg, 2011. | DOI | MR | Zbl
, , and .[40] Calderón-Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot)}$ and problems related to fluid dynamics. J. Reine Angew. Math., 563:197–220, 2003. | DOI | MR | Zbl
and .[41] Integral operators on the halfspace in generalized Lebesgue spaces $L^{p(\cdot)}$. I. J. Math. Anal. Appl., 298(2):559–571, 2004. | DOI | MR | Zbl
and .[42] Integral operators on the halfspace in generalized Lebesgue spaces $L^{p(\cdot)}$. II. J. Math. Anal. Appl., 298(2):572–588, 2004. | DOI | MR | Zbl
and .[43] Non-Newtonian fluids and function spaces. In NAFSA 8— Nonlinear analysis, function spaces and applications. Vol. 8, pages 94–143. Czech. Acad. Sci., Prague, 2007. | fulltext EuDML | MR | Zbl
and .[44] Maximal functions in variable exponent spaces: limiting cases of the exponent. Ann. Acad. Sci. Fenn. Math., 34(2):503–522, 2009. | MR | Zbl
, , , and .[45] Fourier Analysis, volume 29 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, 2001. Translated and revised from the 1995 Spanish original by David Cruz-Uribe. | DOI | MR | Zbl
.[46] Differential operators on spaces of variable integrability. World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2014. | DOI | MR | Zbl
, and .[47] On $L^{p(x)}$ norms. R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455(1981):219–225, 1999. | DOI | MR | Zbl
, and .[48] Potential-type operators in $L^{p(x)}$ spaces. Z. Anal. Anwendungen, 21(3):681–690, 2002. | DOI | MR | Zbl
and .[49] Density of smooth functions in $W^{k,p(x)}(\Omega)$. Proc. Roy. Soc. London Ser. A, 437(1899):229–236, 1992. | DOI | MR | Zbl
and .[50] Existence results to elliptic systems with nonstandard growth conditions. J. Math. Anal. Appl., 300(1):30–42, 2004. | DOI | MR | Zbl
.[51] The maximal operator on generalized Orlicz spaces. J. Funct. Anal., 269(12):4038–4048, 2015. See also corrigendum [52]. | DOI | MR | Zbl
.[52] Corrigendum to “The maximal operator on generalized Orlicz spaces" [J. Funct. Anal. 269 (2015) 4038–4048]. J. Funct. Anal., 271(1):240–243, 2016. | DOI | MR | Zbl
.[53] The geometry of fractal sets, volume 85 of Cambridge Tracts in Mathematics. Cambridge University Press, Cambridge, 1986. | MR | Zbl
.[54] The regularity of Lagrangians $f(x, \xi ) = |\xi|^{\alpha(x)}$ with Hölder exponents $\alpha(x)$. Acta Math. Sinica (N.S.), 12(3):254–261, 1996. A Chinese summary appears in Acta Math. Sinica 40 (1997), no. 1, 158. | MR | Zbl
.[55] Regularity of nonstandard Lagrangians $f(x, \xi )$. Nonlinear Anal., 27(6):669–678, 1996. | DOI | MR | Zbl
.[56] $p(x)$-Laplacian equations. In Topological methods, variational methods and their applications (Taiyuan, 2002), pages 117–123. World Sci. Publ., River Edge, NJ, 2003. | MR | Zbl
.[57] Density of $C^{\infty}(\Omega)$ in $W^{1,p(x)}(\Omega)$ with discontinuous exponent $p(x)$. Math. Nachr., 279(1-2):142–149, 2006. | DOI | MR | Zbl
, , and .[58] Regularity of minimizers of variational integrals with continuous $p(x)$-growth conditions. Chinese J. Contemp. Math., 17(4):327–336, 1996. | MR
and .[59] Regularity of minimum points of variational integrals with continuous $p(x)$-growth conditions. Chinese Ann. Math. Ser. A, 17(5):557–564, 1996. | MR | Zbl
and .[60] Characterization of generalized Orlicz spaces. arXiv e-prints, arXiv:1612.04566, December 2016. | Zbl
, and .[61] A mean continuity type result for certain Sobolev spaces with variable exponent. Commun. Contemp. Math., 4(3):587–605, 2002. | DOI | MR | Zbl
.[62] A local estimate for the maximal function in Lebesgue spaces with EXP-type exponents. J. Funct. Spaces, pages 5, Art. ID 581064, 2015. | DOI | MR | Zbl
.[63] Hardy-Littlewood maximal operator in weighted grand variable exponent Lebesgue space. Mediterr. J. Math., 14(3), pages 20, Art. 118, 2017. | DOI | MR | Zbl
, and .[64] A note on noneffective weights in variable Lebesgue spaces. J. Funct. Spaces Appl., pages 5, Art. ID 853232, 2012. | DOI | MR | Zbl
and .[65] Relative rearrangement and Lebesgue spaces $L^{p(\cdot)}$ with variable exponent. J. Math. Pures Appl. (9), 88(6):506–521, 2007. | DOI | MR | Zbl
and .[66] Variable exponents and grand Lebesgue spaces: some optimal results. Commun. Contemp. Math., 17(6):1550023, 14, 2015. | DOI | MR | Zbl
, and .[67] The modular interpolation inequality in Sobolev spaces with variable exponent attaining the value 1. Math. Inequal. Appl., 14(3):509–522, 2011. | DOI | MR | Zbl
.[68] Orlicz spaces and generalized Orlicz spaces. 2018. | Zbl
and .[69] Overview of differential equations with non-standard growth. Nonlinear Anal., 72(12):4551–4574, 2010. | DOI | MR | Zbl
, , and .[70] On the density of continuous functions in variable exponent Sobolev space. Rev. Mat. Iberoam., 23(1):213–234, 2007. | fulltext EuDML | DOI | MR | Zbl
.[71] Characterization of the variable exponent Sobolev norm without derivatives. Commun. Contemp. Math., 19(3):1650022, 13, 2017. | DOI | MR | Zbl
and .[72] Function spaces with variable exponents—an introduction—. Sci. Math. Jpn., 77(2):187–315, 2014. | MR | Zbl
, and .[73] Rearrangements and convexity of level sets in PDE, volume 1150 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1985. | DOI | MR | Zbl
.[74] Lorentz spaces with variable exponents. Math. Nachr., 287(8-9):938–954, 2014. | DOI | MR | Zbl
and .[75] Weighted Inequalities in Lorentz and Orlicz Spaces. World Scientific Publishing Co. Inc., River Edge, NJ, 1991. | DOI | MR | Zbl
and .[76] Integral operators in non-standard function spaces. Vol. 1, volume 248 of Operator Theory: Advances and Applications. Variable exponent Lebesgue and amalgam spaces. Birkhäuser/Springer, [Cham], 2016. | MR | Zbl
, , and .[77] Integral operators in non-standard function spaces. Vol. 2, volume 249 of Operator Theory: Advances and Applications. Variable exponent Hölder, Morrey-Campanato and grand spaces. Birkhäuser/Springer, [Cham], 2016. | DOI | MR | Zbl
, , and .[78] Zur Normierbarkeit eines allgemeinen topologischen linearen Räumes. Studia Math., 5:29–33, 1934. | fulltext EuDML | Zbl
.[79] On the Muckenchaupt condition in variable Lebesgue spaces. Proc. A. Razmadze Math. Inst., 148:29–33, 2008. | MR | Zbl
.[80] Gagliardo-Nirenberg type inequality for variable exponent Lebesgue spaces. J. Math. Anal. Appl., 356(1):232–236, 2009. | DOI | MR | Zbl
and .[81] Mean oscillations and equimeasurable rearrangements of functions, volume 4 of Lecture Notes of the Unione Matematica Italiana. Springer, Berlin; UMI, Bologna, 2007. | DOI | MR | Zbl
.[82] Density of smooth functions in variable exponent Sobolev spaces. Nonlinear Anal., 127:196–205, 2015. | DOI | MR | Zbl
and .[83] On spaces $L^{p(x)}$ and $W^{k,p(x)}$. Czechoslovak Math. J., 41(116)(4):592–618, 1991. | fulltext EuDML | MR | Zbl
and .[84] Convex Functions and Orlicz Spaces. Translated from the first Russian edition by Leo F. Boron. P. Noordhoff Ltd., Groningen, 1961. | MR
and .[85] Eigenvalues, embeddings and generalised trigonometric functions, volume 2016 of Lecture Notes in Mathematics. Springer, Heidelberg, 2011. | DOI | MR | Zbl
and .[86] A first course in Sobolev spaces, volume 181 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2017. | DOI | MR | Zbl
.[87] On modular inequalities in variable $L^p$ spaces. Arch. Math. (Basel), 85(6):538–543, 2005. | DOI | MR | Zbl
.[88] On some questions related to the maximal operator on variable $L^p$ spaces. Trans. Amer. Math. Soc., 362(8):4229–4242, 2010. | DOI | MR | Zbl
.[89] A new characterization of the Muckenhoupt $A_p$ weights through an extension of the Lorentz-Shimogaki theorem. Indiana Univ. Math. J., 56(6):2697–2722, 2007. | DOI | MR | Zbl
and .[90] Analysis, volume 14 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI, second edition, 2001. | DOI | MR
and .[91] Orlicz spaces and interpolation, volume 5 of Seminários de Matemática [Seminars in Mathematics]. Universidade Estadual de Campinas, Departamento de Matemática, Campinas, 1989. | MR | Zbl
.[92] Regularity and existence of solutions of elliptic equations with p, q-growth conditions. J. Differential Equations, 90(1):1–30, 1991. | DOI | MR | Zbl
.[93] Regularity for elliptic equations with general growth conditions. J. Differential Equations, 105(2):296–333, 1993. | DOI | MR | Zbl
.[94] On the behaviour of solutions to the Dirichlet problem for the $p(x)$-Laplacian when $p(x)$ goes to 1 in a subdomain. Differential Integral Equations, 25(1-2):53–74, 2012. | MR | Zbl
, , , and .[95] Measure of non-compactness for integral operators in weighted Lebesgue spaces. Nova Science Publishers, Inc., New York, 2009. | MR | Zbl
.[96] Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math., 51(4):355–426, 2006. | fulltext EuDML | DOI | MR | Zbl
.[97] Orlicz Spaces and Modular Spaces, volume 1034 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 1983. | DOI | MR | Zbl
.[98] Modulared Semi-Ordered Linear Spaces. Maruzen Co. Ltd., Tokyo, 1950. | MR | Zbl
.[99] Topology and Linear Topological Spaces. Maruzen Co. Ltd., Tokyo, 1951. | MR
.[100] Hardy-Littlewood maximal operator on $L^{p(x)}(\mathbb{R}^n)$. Math. Inequal. Appl., 7(2):255–265, 2004. | DOI | MR | Zbl
.[101] Maximal operator on variable Lebesgue spaces for almost monotone radial exponent. J. Math. Anal. Appl., 337(2):1345–1365, 2008. | DOI | MR | Zbl
.[102] Aspects of the Theory of Bounded Integral Operators in $L^p$−Spaces. Academic Press, London - New York, 1971. | MR | Zbl
.[103] Über konjugierte Exponentenfolgen. Stud. Math., 3:200–211, 1931. | fulltext EuDML | Zbl
.[104] Function spaces. Vol. 1, volume 14 of De Gruyter Series in Nonlinear Analysis and Applications. Walter de Gruyter & Co., Berlin, extended edition, 2013. | MR | Zbl
, , and .[105] An example of a space $L^{p(x)}$ on which the Hardy-Littlewood maximal operator is not bounded. Expo. Math., 19(4):369–371, 2001. | DOI | MR | Zbl
and .[106] Partial differential equations with variable exponents. Variational methods and qualitative analysis. Monographs and Research Notes in Mathematics. CRC Press, Boca Raton, FL, 2015. | DOI | MR
and .[107] Réarrangement Relatif, volume 64 of Mathématiques & Applications (Berlin) [Mathematics & Applications]. Springer, Berlin, 2008. | DOI | MR
.[108] Theory of Orlicz spaces, volume 146 of Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker, Inc., New York, 1991. | MR | Zbl
and .[109] Fractional integration operator of variable order in the Hölder spaces $H^{\lambda(x)}$. Internat. J. Math. Math. Sci., 18(4):777–788, 1995. | fulltext EuDML | DOI | MR | Zbl
and .[110] Real and Complex Analysis. McGraw-Hill Book Co., New York, third edition, 1987. | MR | Zbl
.[111] Electrorheological fluids: modeling and mathematical theory, volume 1748 of Lecture Notes in Mathematics. Springer-Verlag, Berlin, 2000. | DOI | MR | Zbl
.[112] Modeling, mathematical and numerical analysis of electrorheological fluids. Appl. Math., 49(6):565–609, 2004. | fulltext EuDML | DOI | MR | Zbl
.[113] Fractional integration and differentiation of variable order. Anal. Math., 21(3):213–236, 1995. | DOI | MR | Zbl
.[114] Convolution and potential type operators in $L^{p(x)}(\mathbb{R}^n)$. Integral Transform. Spec. Funct., 7(3-4):261–284, 1998. | DOI | MR | Zbl
.[115] Convolution type operators in $L^{p(x)}$. Integral Transform. Spec. Funct., 7(1- 2):123–144, 1998. | DOI | MR | Zbl
.[116] Differentiation and integration of variable order and the spaces $L^{p(x)}$. In Operator theory for complex and hypercomplex analysis (Mexico City, 1994), volume 212 of Contemp. Math., pages 203–219. Amer. Math. Soc., Providence, RI, 1998. | DOI | MR | Zbl
.[117] Denseness of $C_0^\infty(\mathbb{R}N$ in the generalized Sobolev spaces $W^{M,P(X)}(\mathbb{R}^N)$. In Direct and inverse problems in mathematical physics (Newark, DE, 1997), volume 5 of Int. Soc. Anal. Appl. Comput., pages 333–342. Kluwer Acad. Publ., Dordrecht, 2000. | DOI | MR
.[118] Integration and differentiation to a variable fractional order. Integral Transform. Spec. Funct., 1(4):277–300, 1993. | DOI | MR | Zbl
and .[119] The topology of the space $\mathcal{L}^p(t)([0, 1])$. Mat. Zametki, 26(4):613–632, 655, 1979. | MR
.[120] The basis property of the Haar system in the space $\mathcal{L}^p(t)([0, 1])$ and the principle of localization in the mean. Mat. Sb. (N.S.), 130(172)(2):275–283, 286, 1986. | fulltext EuDML | DOI | MR
.[121] Singular integrals and differentiability properties of functions. Princeton Mathematical Series, No. 30. Princeton University Press, Princeton, N.J., 1970. | MR | Zbl
.[122] Harmonic analysis: real-variable methods, orthogonality, and oscillatory integrals, volume 43 of Princeton Mathematical Series. With the assistance of Timothy S. Murphy, Monographs in Harmonic Analysis, III. Princeton University Press, Princeton, NJ, 1993. | MR | Zbl
.[123] Generalization of the problem of best approximation of a function in the space $L^s$. Uch. Zap. Dagestan. Gos. Univ., 7:25–37, 1961.
.[124] Problems of convergence, duality, and averaging for a class of functionals of the calculus of variations. Dokl. Akad. Nauk SSSR, 267(3):524–528, 1982. | MR
.[125] Meyer-type estimates for solving the nonlinear Stokes system. Differ. Uravn., 33(1):107–114, 143, 1997. | MR
.[126] On some variational problems. Russian J. Math. Phys., 5(1):105–116 (1998), 1997. | MR | Zbl
.[127] On the density of smooth functions in Sobolev-Orlicz spaces. Zap. Nauchn. Sem. S.-Peterburg. Otdel. Mat. Inst. Steklov. (POMI), 310(Kraev. Zadachi Mat. Fiz. i Smezh. Vopr. Teor. Funkts. 35 [34]):67–81, 226, 2004. | fulltext EuDML | DOI | MR | Zbl
.[128] Weakly Differentiable Functions, volume 120 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1989. | DOI | MR | Zbl
.