Regularity for minimizers of non-autonomous non-quadratic functionals in the case $1 p 2$: an a priori estimate
Rendiconto della Accademia delle scienze fisiche e matematiche, Série 4, Tome 85 (2018) no. 1, pp. 185-200.

Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica

We establish an a priori estimate for the second derivatives of local minimizers of integral functionals of the form \begin{equation*}\mathcal{F}(\nu, \Omega) = \int_{\Omega} f(x, D\nu(x))\, dx \end{equation*} with convex integrand with respect to the gradient variable, assuming that the function that measures the oscillation of the integrand with respect to the $x$ variable belongs to a suitable Sobolev space. The novelty here is that we deal with integrands satisfying subquadratic growth conditions with respect to gradient variable.
Ricaviamo una stima a priori per le derivate seconde di minimi locali di funzionali integrali del tipo \begin{equation*}\mathcal{F}(\nu, \Omega) = \int_{\Omega} f(x, D\nu(x))\, dx \end{equation*} con integranda convessa rispetto alla variabile gradiente, assumendo che la funzione che misura l’oscillazione dell’integranda rispetto alla variabile $x$ appartenga ad un opportuno spazio di Sobolev. La novità, qui, è che si tratta del caso in cui l’integranda soddisfi condizioni di crescita subquadratica rispetto alla variabile gradiente.
@article{RASFM_2018_4_85_1_a4,
     author = {Gentile, Andrea},
     title = {Regularity for minimizers of non-autonomous non-quadratic functionals in the case $1 < p < 2$: an a priori estimate},
     journal = {Rendiconto della Accademia delle scienze fisiche e matematiche},
     pages = {185--200},
     publisher = {mathdoc},
     volume = {Ser. 4, 85},
     number = {1},
     year = {2018},
     zbl = {0686.49004},
     mrnumber = {997847},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/RASFM_2018_4_85_1_a4/}
}
TY  - JOUR
AU  - Gentile, Andrea
TI  - Regularity for minimizers of non-autonomous non-quadratic functionals in the case $1 < p < 2$: an a priori estimate
JO  - Rendiconto della Accademia delle scienze fisiche e matematiche
PY  - 2018
SP  - 185
EP  - 200
VL  - 85
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/RASFM_2018_4_85_1_a4/
LA  - en
ID  - RASFM_2018_4_85_1_a4
ER  - 
%0 Journal Article
%A Gentile, Andrea
%T Regularity for minimizers of non-autonomous non-quadratic functionals in the case $1 < p < 2$: an a priori estimate
%J Rendiconto della Accademia delle scienze fisiche e matematiche
%D 2018
%P 185-200
%V 85
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/RASFM_2018_4_85_1_a4/
%G en
%F RASFM_2018_4_85_1_a4
Gentile, Andrea. Regularity for minimizers of non-autonomous non-quadratic functionals in the case $1 < p < 2$: an a priori estimate. Rendiconto della Accademia delle scienze fisiche e matematiche, Série 4, Tome 85 (2018) no. 1, pp. 185-200. http://geodesic.mathdoc.fr/item/RASFM_2018_4_85_1_a4/

Acerbi E. and Fusco N. (1989), Regularity for minimizers of nonquadratic functionals: The case $1 &lt; p &lt; 2$, J. Math. Anal. Appl., 140, no. 1, 115-135. | DOI | MR | Zbl

Baisón A. L., Clop A., Giova R., Orobitg J. and Passarelli Di Napoli A. (2017), Fractional differentiability for solutions of nonlinear elliptic equations, Potential Anal., 46, no. 3, 403-430. | DOI | MR | Zbl

Carozza M., Kristensen J. and Passarelli Di Napoli A. (2011), Higher differentiability of minimizers of convex variational integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire 28, no. 3, 395-411. | DOI | MR | Zbl

Clop A., Faraco D., Mateu J., Orobitg J. and Zhong X. (2009), Beltrami equations with coefficient in the Sobolev space $W^{1,p}$, Publ. Mat., 53, no. 1, 197-230. | fulltext EuDML | DOI | MR | Zbl

Clop A., Giova R. and Passarelli Di Napoli A. (2017), Besov regularity for solutions of $p$-harmonic equations, Adv. Nonlinear Anal., DOI: 10.1515/anona-2017-0030 | DOI | MR | Zbl

Cruz-Uribe D., Moen K. and Rodney S. (2016), Regularity results for weak solutions of elliptic PDEs below the natural exponent, Ann. Mat. Pura Appl., (4), 195 , no. 3. | DOI | MR | Zbl

Diening L., Stroffolini B. and Verde A. (2009), Everywhere regularity of functionals with $\phi$-growth, Manu. Math., 129, 449-481. | DOI | MR | Zbl

Diening L., Stroffolini B. and Verde A. (2011), Lipschitz regularity for some asymptotically convex problems. ESAIM Control Optim. Calc. Var., (1), 17, 178-189. | fulltext EuDML | DOI | MR | Zbl

Eleuteri M., Marcellini P., Mascolo E. (2016), Lipschitz estimates for systems with ellipticity conditions at infinity, Ann. Mat. Pura e Appl., (4), 195 1575-1603. | DOI | MR | Zbl

Eleuteri M., Marcellini P., Mascolo E. (2016), Lipschitz continuity for energy integrals with variable exponents, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 27 61-87. | DOI | MR | Zbl

Fusco N. and Hutchinson J. E. (1985). $C^{1,\alpha}$ partial of function minimizing quasiconvex integrals. Manuscripta Math., 54, 121–143. | fulltext EuDML | DOI | MR | Zbl

Giaquinta M. (1983), Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Ann. of Math. Stud., 105, Princeton University Press. | MR | Zbl

Giaquinta M. and Modica G. (1986), Remarks on the regularity of the minimizers of certain degenerate functionals. Manu. Math., 57, 55-99. | fulltext EuDML | DOI | MR | Zbl

Giova R., Passarelli Di Napoli A. (2017), Regularity results for a priori bounded minimizers of non-autonomous functionals with discontinuous coefficients, Adv. Calc. Var.. | DOI | MR | Zbl

Giova R. (2015), Higher differentiability for n-harmonic systems with Sobolev coefficients, J. Differential Equations, 259, no. 11, 5667-5687. | DOI | MR | Zbl

Giusti E. (2003), Direct Methods in the Calculus of Variations, World Scientific Publishing. | DOI | MR | Zbl

Hajlasz P. (1996), Sobolev Spaces on an Arbitrary Metric Space, Potential Anal. 5 , 403-415. | DOI | MR | Zbl

Kristensen J. and Mingione G. (2010), Boundary Regularity in Variational Problems, Arch Rational Mech. Anal., 198, 369-455. | DOI | MR | Zbl

Kuusi T. and Mingione G. (2012), Universal potential estimates, Journal of Functional Analysis, 262, 4205-4269. | DOI | MR | Zbl

Passarelli Di Napoli A. (2014), Higher differentiability of minimizers of variational integrals with Sobolev coefficients, Adv. Calc. Var. 7 , no. 1, 59-89. | DOI | MR | Zbl

Passarelli Di Napoli A. (2014), Higher differentiability of solutions of elliptic systems with Sobolev coefficients: The case $p = n = 2$, Potential Anal. 41, no. 3, 715-735. | DOI | MR | Zbl