Regularity for minimizers of non-autonomous non-quadratic functionals in the case $1 p 2$: an a priori estimate
Rendiconto della Accademia delle scienze fisiche e matematiche, Série 4, Tome 85 (2018) no. 1, pp. 185-200
Cet article a éte moissonné depuis la source Biblioteca Digitale Italiana di Matematica
We establish an a priori estimate for the second derivatives of local minimizers of integral functionals of the form \begin{equation*}\mathcal{F}(\nu, \Omega) = \int_{\Omega} f(x, D\nu(x))\, dx \end{equation*} with convex integrand with respect to the gradient variable, assuming that the function that measures the oscillation of the integrand with respect to the $x$ variable belongs to a suitable Sobolev space. The novelty here is that we deal with integrands satisfying subquadratic growth conditions with respect to gradient variable.
@article{RASFM_2018_4_85_1_a4,
author = {Gentile, Andrea},
title = {Regularity for minimizers of non-autonomous non-quadratic functionals in the case $1 < p < 2$: an a priori estimate},
journal = {Rendiconto della Accademia delle scienze fisiche e matematiche},
pages = {185--200},
year = {2018},
volume = {Ser. 4, 85},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/RASFM_2018_4_85_1_a4/}
}
TY - JOUR AU - Gentile, Andrea TI - Regularity for minimizers of non-autonomous non-quadratic functionals in the case $1 < p < 2$: an a priori estimate JO - Rendiconto della Accademia delle scienze fisiche e matematiche PY - 2018 SP - 185 EP - 200 VL - 85 IS - 1 UR - http://geodesic.mathdoc.fr/item/RASFM_2018_4_85_1_a4/ LA - en ID - RASFM_2018_4_85_1_a4 ER -
%0 Journal Article %A Gentile, Andrea %T Regularity for minimizers of non-autonomous non-quadratic functionals in the case $1 < p < 2$: an a priori estimate %J Rendiconto della Accademia delle scienze fisiche e matematiche %D 2018 %P 185-200 %V 85 %N 1 %U http://geodesic.mathdoc.fr/item/RASFM_2018_4_85_1_a4/ %G en %F RASFM_2018_4_85_1_a4
Gentile, Andrea. Regularity for minimizers of non-autonomous non-quadratic functionals in the case $1 < p < 2$: an a priori estimate. Rendiconto della Accademia delle scienze fisiche e matematiche, Série 4, Tome 85 (2018) no. 1, pp. 185-200. http://geodesic.mathdoc.fr/item/RASFM_2018_4_85_1_a4/