Voir la notice de l'article provenant de la source Biblioteca Digitale Italiana di Matematica
@article{RASFM_2018_4_85_1_a4, author = {Gentile, Andrea}, title = {Regularity for minimizers of non-autonomous non-quadratic functionals in the case $1 < p < 2$: an a priori estimate}, journal = {Rendiconto della Accademia delle scienze fisiche e matematiche}, pages = {185--200}, publisher = {mathdoc}, volume = {Ser. 4, 85}, number = {1}, year = {2018}, zbl = {0686.49004}, mrnumber = {997847}, language = {en}, url = {http://geodesic.mathdoc.fr/item/RASFM_2018_4_85_1_a4/} }
TY - JOUR AU - Gentile, Andrea TI - Regularity for minimizers of non-autonomous non-quadratic functionals in the case $1 < p < 2$: an a priori estimate JO - Rendiconto della Accademia delle scienze fisiche e matematiche PY - 2018 SP - 185 EP - 200 VL - 85 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/RASFM_2018_4_85_1_a4/ LA - en ID - RASFM_2018_4_85_1_a4 ER -
%0 Journal Article %A Gentile, Andrea %T Regularity for minimizers of non-autonomous non-quadratic functionals in the case $1 < p < 2$: an a priori estimate %J Rendiconto della Accademia delle scienze fisiche e matematiche %D 2018 %P 185-200 %V 85 %N 1 %I mathdoc %U http://geodesic.mathdoc.fr/item/RASFM_2018_4_85_1_a4/ %G en %F RASFM_2018_4_85_1_a4
Gentile, Andrea. Regularity for minimizers of non-autonomous non-quadratic functionals in the case $1 < p < 2$: an a priori estimate. Rendiconto della Accademia delle scienze fisiche e matematiche, Série 4, Tome 85 (2018) no. 1, pp. 185-200. http://geodesic.mathdoc.fr/item/RASFM_2018_4_85_1_a4/
Regularity for minimizers of nonquadratic functionals: The case $1 < p < 2$, J. Math. Anal. Appl., 140, no. 1, 115-135. | DOI | MR | Zbl
and (1989),Fractional differentiability for solutions of nonlinear elliptic equations, Potential Anal., 46, no. 3, 403-430. | DOI | MR | Zbl
, , , and (2017),Higher differentiability of minimizers of convex variational integrals, Ann. Inst. H. Poincaré Anal. Non Linéaire 28, no. 3, 395-411. | DOI | MR | Zbl
, and (2011),Beltrami equations with coefficient in the Sobolev space $W^{1,p}$, Publ. Mat., 53, no. 1, 197-230. | fulltext EuDML | DOI | MR | Zbl
, , , and (2009),Besov regularity for solutions of $p$-harmonic equations, Adv. Nonlinear Anal., DOI: 10.1515/anona-2017-0030 | DOI | MR | Zbl
, and (2017),Regularity results for weak solutions of elliptic PDEs below the natural exponent, Ann. Mat. Pura Appl., (4), 195 , no. 3. | DOI | MR | Zbl
, and (2016),Everywhere regularity of functionals with $\phi$-growth, Manu. Math., 129, 449-481. | DOI | MR | Zbl
, and (2009),Lipschitz regularity for some asymptotically convex problems. ESAIM Control Optim. Calc. Var., (1), 17, 178-189. | fulltext EuDML | DOI | MR | Zbl
, and (2011),Lipschitz estimates for systems with ellipticity conditions at infinity, Ann. Mat. Pura e Appl., (4), 195 1575-1603. | DOI | MR | Zbl
, , (2016),Lipschitz continuity for energy integrals with variable exponents, Atti Accad. Naz. Lincei Rend. Lincei Mat. Appl., 27 61-87. | DOI | MR | Zbl
, , (2016),$C^{1,\alpha}$ partial of function minimizing quasiconvex integrals. Manuscripta Math., 54, 121–143. | fulltext EuDML | DOI | MR | Zbl
and (1985).Multiple Integrals in the Calculus of Variations and Nonlinear Elliptic Systems, Ann. of Math. Stud., 105, Princeton University Press. | MR | Zbl
(1983),Remarks on the regularity of the minimizers of certain degenerate functionals. Manu. Math., 57, 55-99. | fulltext EuDML | DOI | MR | Zbl
and (1986),Regularity results for a priori bounded minimizers of non-autonomous functionals with discontinuous coefficients, Adv. Calc. Var.. | DOI | MR | Zbl
, (2017),Higher differentiability for n-harmonic systems with Sobolev coefficients, J. Differential Equations, 259, no. 11, 5667-5687. | DOI | MR | Zbl
(2015),Direct Methods in the Calculus of Variations, World Scientific Publishing. | DOI | MR | Zbl
(2003),Sobolev Spaces on an Arbitrary Metric Space, Potential Anal. 5 , 403-415. | DOI | MR | Zbl
(1996),Boundary Regularity in Variational Problems, Arch Rational Mech. Anal., 198, 369-455. | DOI | MR | Zbl
and (2010),Universal potential estimates, Journal of Functional Analysis, 262, 4205-4269. | DOI | MR | Zbl
and (2012),Higher differentiability of minimizers of variational integrals with Sobolev coefficients, Adv. Calc. Var. 7 , no. 1, 59-89. | DOI | MR | Zbl
(2014),Higher differentiability of solutions of elliptic systems with Sobolev coefficients: The case $p = n = 2$, Potential Anal. 41, no. 3, 715-735. | DOI | MR | Zbl
(2014),