On the reduction of a random basis
ESAIM: Probability and Statistics, Tome 13 (2009), pp. 437-458

Voir la notice de l'article provenant de la source Numdam

For pn, let b 1 (n) ,...,b p (n) be independent random vectors in n with the same distribution invariant by rotation and without mass at the origin. Almost surely these vectors form a basis for the euclidean lattice they generate. The topic of this paper is the property of reduction of this random basis in the sense of Lenstra-Lenstra-Lovász (LLL). If b ^ 1 (n) ,...,b ^ p (n) is the basis obtained from b 1 (n) ,...,b p (n) by Gram-Schmidt orthogonalization, the quality of the reduction depends upon the sequence of ratios of squared lengths of consecutive vectors r j (n) =b ^ n-j+1 (n) 2 /b ^ n-j (n) 2 , j=1,...,p-1. We show that as n the process (r j (n) -1,j1) tends in distribution in some sense to an explicit process ( j -1,j1); some properties of the latter are provided. The probability that a random random basis is s-LLL-reduced is then showed to converge for p=n-g, and g fixed, or g=g(n)+.

DOI : 10.1051/ps:2008012
Classification : 15A52, 15A03, 60B12, 60F99, 06B99, 68W40
Keywords: random matrices, random basis, orthogonality index, determinant, lattice reduction
@article{PS_2009__13__437_0,
     author = {Akhavi, Ali and Marckert, Jean-Fran\c{c}ois and Rouault, Alain},
     title = {On the reduction of a random basis},
     journal = {ESAIM: Probability and Statistics},
     pages = {437--458},
     publisher = {EDP-Sciences},
     volume = {13},
     year = {2009},
     doi = {10.1051/ps:2008012},
     mrnumber = {2555365},
     zbl = {1185.15030},
     language = {en},
     url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2008012/}
}
TY  - JOUR
AU  - Akhavi, Ali
AU  - Marckert, Jean-François
AU  - Rouault, Alain
TI  - On the reduction of a random basis
JO  - ESAIM: Probability and Statistics
PY  - 2009
SP  - 437
EP  - 458
VL  - 13
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/articles/10.1051/ps:2008012/
DO  - 10.1051/ps:2008012
LA  - en
ID  - PS_2009__13__437_0
ER  - 
%0 Journal Article
%A Akhavi, Ali
%A Marckert, Jean-François
%A Rouault, Alain
%T On the reduction of a random basis
%J ESAIM: Probability and Statistics
%D 2009
%P 437-458
%V 13
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/articles/10.1051/ps:2008012/
%R 10.1051/ps:2008012
%G en
%F PS_2009__13__437_0
Akhavi, Ali; Marckert, Jean-François; Rouault, Alain. On the reduction of a random basis. ESAIM: Probability and Statistics, Tome 13 (2009), pp. 437-458. doi: 10.1051/ps:2008012

Cité par Sources :