Voir la notice de l'article provenant de la source Numdam
For , let be independent random vectors in with the same distribution invariant by rotation and without mass at the origin. Almost surely these vectors form a basis for the euclidean lattice they generate. The topic of this paper is the property of reduction of this random basis in the sense of Lenstra-Lenstra-Lovász (LLL). If is the basis obtained from by Gram-Schmidt orthogonalization, the quality of the reduction depends upon the sequence of ratios of squared lengths of consecutive vectors , . We show that as the process tends in distribution in some sense to an explicit process ; some properties of the latter are provided. The probability that a random random basis is -LLL-reduced is then showed to converge for , and fixed, or .
Keywords: random matrices, random basis, orthogonality index, determinant, lattice reduction
@article{PS_2009__13__437_0, author = {Akhavi, Ali and Marckert, Jean-Fran\c{c}ois and Rouault, Alain}, title = {On the reduction of a random basis}, journal = {ESAIM: Probability and Statistics}, pages = {437--458}, publisher = {EDP-Sciences}, volume = {13}, year = {2009}, doi = {10.1051/ps:2008012}, mrnumber = {2555365}, zbl = {1185.15030}, language = {en}, url = {http://geodesic.mathdoc.fr/articles/10.1051/ps:2008012/} }
TY - JOUR AU - Akhavi, Ali AU - Marckert, Jean-François AU - Rouault, Alain TI - On the reduction of a random basis JO - ESAIM: Probability and Statistics PY - 2009 SP - 437 EP - 458 VL - 13 PB - EDP-Sciences UR - http://geodesic.mathdoc.fr/articles/10.1051/ps:2008012/ DO - 10.1051/ps:2008012 LA - en ID - PS_2009__13__437_0 ER -
%0 Journal Article %A Akhavi, Ali %A Marckert, Jean-François %A Rouault, Alain %T On the reduction of a random basis %J ESAIM: Probability and Statistics %D 2009 %P 437-458 %V 13 %I EDP-Sciences %U http://geodesic.mathdoc.fr/articles/10.1051/ps:2008012/ %R 10.1051/ps:2008012 %G en %F PS_2009__13__437_0
Akhavi, Ali; Marckert, Jean-François; Rouault, Alain. On the reduction of a random basis. ESAIM: Probability and Statistics, Tome 13 (2009), pp. 437-458. doi: 10.1051/ps:2008012
Cité par Sources :