Exponential inequalities and functional central limit theorems for random fields
ESAIM: Probability and Statistics, Tome 5 (2001), pp. 77-104

Voir la notice de l'article provenant de la source Numdam

We establish new exponential inequalities for partial sums of random fields. Next, using classical chaining arguments, we give sufficient conditions for partial sum processes indexed by large classes of sets to converge to a set-indexed brownian motion. For stationary fields of bounded random variables, the condition is expressed in terms of a series of conditional expectations. For non-uniform φ-mixing random fields, we require both finite fourth moments and an algebraic decay of the mixing coefficients.

Classification : 37A50, 60F17
Keywords: functional central limit theorem, stationary random fields, moment inequalities, exponential inequalities, mixing, metric entropy, chaining
@article{PS_2001__5__77_0,
     author = {Dedecker, J\'er\^ome},
     title = {Exponential inequalities and functional central limit theorems for random fields},
     journal = {ESAIM: Probability and Statistics},
     pages = {77--104},
     publisher = {EDP-Sciences},
     volume = {5},
     year = {2001},
     mrnumber = {1875665},
     zbl = {1003.60033},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PS_2001__5__77_0/}
}
TY  - JOUR
AU  - Dedecker, Jérôme
TI  - Exponential inequalities and functional central limit theorems for random fields
JO  - ESAIM: Probability and Statistics
PY  - 2001
SP  - 77
EP  - 104
VL  - 5
PB  - EDP-Sciences
UR  - http://geodesic.mathdoc.fr/item/PS_2001__5__77_0/
LA  - en
ID  - PS_2001__5__77_0
ER  - 
%0 Journal Article
%A Dedecker, Jérôme
%T Exponential inequalities and functional central limit theorems for random fields
%J ESAIM: Probability and Statistics
%D 2001
%P 77-104
%V 5
%I EDP-Sciences
%U http://geodesic.mathdoc.fr/item/PS_2001__5__77_0/
%G en
%F PS_2001__5__77_0
Dedecker, Jérôme. Exponential inequalities and functional central limit theorems for random fields. ESAIM: Probability and Statistics, Tome 5 (2001), pp. 77-104. http://geodesic.mathdoc.fr/item/PS_2001__5__77_0/