Voir la notice de l'acte provenant de la source Numdam
@article{PSMIR_1975___S4_A27_0, author = {Zenhder, E.}, title = {Hamiltonian {Systems} {Close} to {Integrable} {Systems}}, journal = {Publications de l'Institut de recherche math\'ematiques de Rennes}, eid = {27}, pages = {1--12}, publisher = {D\'epartement de Math\'ematiques et Informatique, Universit\'e de Rennes}, number = {S4}, year = {1975}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PSMIR_1975___S4_A27_0/} }
TY - JOUR AU - Zenhder, E. TI - Hamiltonian Systems Close to Integrable Systems JO - Publications de l'Institut de recherche mathématiques de Rennes PY - 1975 SP - 1 EP - 12 IS - S4 PB - Département de Mathématiques et Informatique, Université de Rennes UR - http://geodesic.mathdoc.fr/item/PSMIR_1975___S4_A27_0/ LA - en ID - PSMIR_1975___S4_A27_0 ER -
%0 Journal Article %A Zenhder, E. %T Hamiltonian Systems Close to Integrable Systems %J Publications de l'Institut de recherche mathématiques de Rennes %D 1975 %P 1-12 %N S4 %I Département de Mathématiques et Informatique, Université de Rennes %U http://geodesic.mathdoc.fr/item/PSMIR_1975___S4_A27_0/ %G en %F PSMIR_1975___S4_A27_0
Zenhder, E. Hamiltonian Systems Close to Integrable Systems. Publications de l'Institut de recherche mathématiques de Rennes, International Conference on Dynamical Systems in Mathematical Physics, no. S4 (1975), article no. 27, 12 p. http://geodesic.mathdoc.fr/item/PSMIR_1975___S4_A27_0/
1] Stable and random motions in dynamical systems". Annals of math. Studies, No. 77, Princeton Univ. Press 1973. | Zbl | MR
:"2] On the conservation of hyperbolic invariant tori for Hamiltonian systems". Journal of Diff. Equations, 15, pp. 1 - 69 . , 1974. | Zbl | MR
:"3] Behaviour of Hamiltonian systems close to integrable." Announced in Functional Anal.Appl.5, 333-339, 1971. | Zbl
:"4] Generalized implicit function theorems with Applications to some small divisor problems I". Comm. Pure and Appl. Math. Vol XXVIII pp.91 - 140, 1975. | Zbl | MR
:"5] Unstable phenomena at stable equilibrium points". In preparation.
"