Generalized Coherent Pairs on the Unit Circle and Sobolev Orthogonal Polynomials
Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 193 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A pair of regular Hermitian linear functionals $(\U,\V)$ is said to be an \emph{$(M,N)$-coherent pair of order $m$ on the unit circle} if their corresponding sequences of monic orthogonal polynomials $\{\phi_n(z)\}_{n\geq0}$ and $\{\psi_n(z)\}_{n\geq0}$ satisfy $ um_{i=0}^M a_{i,n} hi^{(m)}_{n+m-i}(z)=um_{j=0}^N b_{j,n} si_{n-j}(z), \quad n\geq 0, $ where $M,N,m\geq0$, $a_{i,n}$ and $b_{j,n}$, for $0\leq i\leq M$, $0\leq j\leq N$, $n\geq0$, are complex numbers such that $a_{M,n}\neq0$, $n\geq M$, $b_{N,n}\neq0$, $n\geq N$, and $a_{i,n}=b_{i,n}=0$, $i>n$. When $m=1$, $(\U,\V)$ is called a \emph{$(M,N)$-coherent pair on the unit circle}. We focus our attention on the Sobolev inner product $ \biglangle p(z),q(z)\bigr\rangle_ambda=\biglangle\U, p(z)verline{q}(1/z) \bigr\rangle +\biglangle\V, p^{(m)}(z)verline{q^{(m)}}(1/z)\bigr\rangle, \quad ambda>0,\,mı\Z^+, $ assuming that $\U$ and $\V$ is an $(M,N)$-coherent pair of order $m$ on the unit circle. We generalize and extend several recent results of the framework of Sobolev orthogonal polynomials and their connections with coherent pairs. Besides, we analyze the cases $(M,N)=(1,1)$ and $(M,N)=(1,0)$ in detail. In particular, we illustrate the situation when $\U$ is the Lebesgue linear functional and $\V$ is the Bernstein-Szegő linear functional. Finally, a matrix interpretation of $(M,N)$-coherence is given.
Classification : 13B05 42C05
Keywords: coherent pairs, Sobolev inner products, structure relations, Hermitian linear functionals, orthogonal polynomials on the unit circle, Sobolev orthogonal polynomials, Lebesgue linear functional, Bernstein-Szegő linear functional, Hessenberg matrices
@article{PIM_2014_N_S_96_110_a14,
     author = {Francisco Marcell\'an and Natalia C. Pinz\'on-Cort\'es},
     title = {Generalized {Coherent} {Pairs} on the {Unit} {Circle} and {Sobolev} {Orthogonal} {Polynomials}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {193 },
     publisher = {mathdoc},
     volume = {_N_S_96},
     number = {110},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a14/}
}
TY  - JOUR
AU  - Francisco Marcellán
AU  - Natalia C. Pinzón-Cortés
TI  - Generalized Coherent Pairs on the Unit Circle and Sobolev Orthogonal Polynomials
JO  - Publications de l'Institut Mathématique
PY  - 2014
SP  - 193 
VL  - _N_S_96
IS  - 110
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a14/
LA  - en
ID  - PIM_2014_N_S_96_110_a14
ER  - 
%0 Journal Article
%A Francisco Marcellán
%A Natalia C. Pinzón-Cortés
%T Generalized Coherent Pairs on the Unit Circle and Sobolev Orthogonal Polynomials
%J Publications de l'Institut Mathématique
%D 2014
%P 193 
%V _N_S_96
%N 110
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a14/
%G en
%F PIM_2014_N_S_96_110_a14
Francisco Marcellán; Natalia C. Pinzón-Cortés. Generalized Coherent Pairs on the Unit Circle and Sobolev Orthogonal Polynomials. Publications de l'Institut Mathématique, _N_S_96 (2014) no. 110, p. 193 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_96_110_a14/