Completely Pseudo-valuation Rings and Their Extensions
Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 249 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Recall that a commutative ring $R$ is said to be a pseudo-valuation ring if every prime ideal of $R$ is strongly prime. We define a completely pseudo-valuation ring. Let $R$ be a ring (not necessarily commutative). We say that $R$ is a completely pseudo-valuation ring if every prime ideal of $R$ is completely prime. With this we prove that if $R$ is a commutative Noetherian ring, which is also an algebra over $\mathbb{Q}$ (the field of rational numbers) and $\delta$ a derivation of $R$, then $R$ is a completely pseudo-valuation ring implies that $R[x;\delta]$ is a completely pseudo-valuation ring. We prove a similar result when prime is replaced by minimal prime.
Classification : 16S36 16N40 16P40
@article{PIM_2014_N_S_95_109_a19,
     author = {Vijay Kumar Bhat},
     title = {Completely {Pseudo-valuation} {Rings} and {Their} {Extensions}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {249 },
     publisher = {mathdoc},
     volume = {_N_S_95},
     number = {109},
     year = {2014},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a19/}
}
TY  - JOUR
AU  - Vijay Kumar Bhat
TI  - Completely Pseudo-valuation Rings and Their Extensions
JO  - Publications de l'Institut Mathématique
PY  - 2014
SP  - 249 
VL  - _N_S_95
IS  - 109
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a19/
LA  - en
ID  - PIM_2014_N_S_95_109_a19
ER  - 
%0 Journal Article
%A Vijay Kumar Bhat
%T Completely Pseudo-valuation Rings and Their Extensions
%J Publications de l'Institut Mathématique
%D 2014
%P 249 
%V _N_S_95
%N 109
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a19/
%G en
%F PIM_2014_N_S_95_109_a19
Vijay Kumar Bhat. Completely Pseudo-valuation Rings and Their Extensions. Publications de l'Institut Mathématique, _N_S_95 (2014) no. 109, p. 249 . http://geodesic.mathdoc.fr/item/PIM_2014_N_S_95_109_a19/