Ordering Cacti With $n$ Vertices and $k$ Cycles by Their Laplacian Spectral Radii
Publications de l'Institut Mathématique, _N_S_92 (2012) no. 106, p. 117 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

A graph is a cactus if any two of its cycles have at most one common vertex. In this paper, we determine the first sixteen largest Laplacian spectral radii together with the corresponding graphs among all connected cacti with $n$ vertices and $k$ cycles, where $n\geq 2k+8$.
Classification : 0550
@article{PIM_2012_N_S_92_106_a8,
     author = {Shu-Guang Guo and Yan-Feng Wang},
     title = {Ordering {Cacti} {With} $n$ {Vertices} and $k$ {Cycles} by {Their} {Laplacian} {Spectral} {Radii}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {117 },
     publisher = {mathdoc},
     volume = {_N_S_92},
     number = {106},
     year = {2012},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2012_N_S_92_106_a8/}
}
TY  - JOUR
AU  - Shu-Guang Guo
AU  - Yan-Feng Wang
TI  - Ordering Cacti With $n$ Vertices and $k$ Cycles by Their Laplacian Spectral Radii
JO  - Publications de l'Institut Mathématique
PY  - 2012
SP  - 117 
VL  - _N_S_92
IS  - 106
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2012_N_S_92_106_a8/
LA  - en
ID  - PIM_2012_N_S_92_106_a8
ER  - 
%0 Journal Article
%A Shu-Guang Guo
%A Yan-Feng Wang
%T Ordering Cacti With $n$ Vertices and $k$ Cycles by Their Laplacian Spectral Radii
%J Publications de l'Institut Mathématique
%D 2012
%P 117 
%V _N_S_92
%N 106
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2012_N_S_92_106_a8/
%G en
%F PIM_2012_N_S_92_106_a8
Shu-Guang Guo; Yan-Feng Wang. Ordering Cacti With $n$ Vertices and $k$ Cycles by Their Laplacian Spectral Radii. Publications de l'Institut Mathématique, _N_S_92 (2012) no. 106, p. 117 . http://geodesic.mathdoc.fr/item/PIM_2012_N_S_92_106_a8/