Ordering Cacti With $n$ Vertices and $k$ Cycles by Their Laplacian Spectral Radii
Publications de l'Institut Mathématique, _N_S_92 (2012) no. 106, p. 117
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
A graph is a cactus if any two of its cycles have at most one common vertex. In this paper, we determine the first sixteen largest Laplacian spectral radii together with the corresponding graphs among all connected cacti with $n$ vertices and $k$ cycles, where $n\geq 2k+8$.
Classification :
0550
@article{PIM_2012_N_S_92_106_a8,
author = {Shu-Guang Guo and Yan-Feng Wang},
title = {Ordering {Cacti} {With} $n$ {Vertices} and $k$ {Cycles} by {Their} {Laplacian} {Spectral} {Radii}},
journal = {Publications de l'Institut Math\'ematique},
pages = {117 },
publisher = {mathdoc},
volume = {_N_S_92},
number = {106},
year = {2012},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2012_N_S_92_106_a8/}
}
TY - JOUR AU - Shu-Guang Guo AU - Yan-Feng Wang TI - Ordering Cacti With $n$ Vertices and $k$ Cycles by Their Laplacian Spectral Radii JO - Publications de l'Institut Mathématique PY - 2012 SP - 117 VL - _N_S_92 IS - 106 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2012_N_S_92_106_a8/ LA - en ID - PIM_2012_N_S_92_106_a8 ER -
%0 Journal Article %A Shu-Guang Guo %A Yan-Feng Wang %T Ordering Cacti With $n$ Vertices and $k$ Cycles by Their Laplacian Spectral Radii %J Publications de l'Institut Mathématique %D 2012 %P 117 %V _N_S_92 %N 106 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_2012_N_S_92_106_a8/ %G en %F PIM_2012_N_S_92_106_a8
Shu-Guang Guo; Yan-Feng Wang. Ordering Cacti With $n$ Vertices and $k$ Cycles by Their Laplacian Spectral Radii. Publications de l'Institut Mathématique, _N_S_92 (2012) no. 106, p. 117 . http://geodesic.mathdoc.fr/item/PIM_2012_N_S_92_106_a8/