On the Selberg Integral of the $k$-divisor Function and the $2k$-th Moment of the Riemann Zeta-function
Publications de l'Institut Mathématique, _N_S_88 (2010) no. 102, p. 99
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In the literature one can find links between the $2k$-th moment of the Riemann zeta-function and averages involving $d_k(n)$, the divisor function generated by $\zeta^k(s)$. There are, in fact, two bounds: one for the $2k$-th moment of $\zeta(s)$ coming from a simple average of correlations of the $d_k$; and the other, which is a more recent approach, for the Selberg integral involving $d_k(n)$, applying known bounds for the $2k$-th moment of the zeta-function. Building on the former work, we apply an elementary approach (based on arithmetic averages) in order to get the reverse link to the second work; i.e., we obtain (conditional) bounds for the $2k$-th moment of the zeta-function from the Selberg integral bounds involving $d_k(n)$.
Classification :
11M06 11N37
@article{PIM_2010_N_S_88_102_a6,
author = {Giovanni Coppola},
title = {On the {Selberg} {Integral} of the $k$-divisor {Function} and the $2k$-th {Moment} of the {Riemann} {Zeta-function}},
journal = {Publications de l'Institut Math\'ematique},
pages = {99 },
year = {2010},
volume = {_N_S_88},
number = {102},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a6/}
}
TY - JOUR AU - Giovanni Coppola TI - On the Selberg Integral of the $k$-divisor Function and the $2k$-th Moment of the Riemann Zeta-function JO - Publications de l'Institut Mathématique PY - 2010 SP - 99 VL - _N_S_88 IS - 102 UR - http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a6/ LA - en ID - PIM_2010_N_S_88_102_a6 ER -
%0 Journal Article %A Giovanni Coppola %T On the Selberg Integral of the $k$-divisor Function and the $2k$-th Moment of the Riemann Zeta-function %J Publications de l'Institut Mathématique %D 2010 %P 99 %V _N_S_88 %N 102 %U http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a6/ %G en %F PIM_2010_N_S_88_102_a6
Giovanni Coppola. On the Selberg Integral of the $k$-divisor Function and the $2k$-th Moment of the Riemann Zeta-function. Publications de l'Institut Mathématique, _N_S_88 (2010) no. 102, p. 99 . http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a6/