On the Selberg Integral of the $k$-divisor Function and the $2k$-th Moment of the Riemann Zeta-function
Publications de l'Institut Mathématique, _N_S_88 (2010) no. 102, p. 99
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
In the literature one can find links between the $2k$-th moment of the Riemann zeta-function and averages involving $d_k(n)$, the divisor function generated by $\zeta^k(s)$. There are, in fact, two bounds: one for the $2k$-th moment of $\zeta(s)$ coming from a simple average of correlations of the $d_k$; and the other, which is a more recent approach, for the Selberg integral involving $d_k(n)$, applying known bounds for the $2k$-th moment of the zeta-function. Building on the former work, we apply an elementary approach (based on arithmetic averages) in order to get the reverse link to the second work; i.e., we obtain (conditional) bounds for the $2k$-th moment of the zeta-function from the Selberg integral bounds involving $d_k(n)$.
Classification :
11M06 11N37
@article{PIM_2010_N_S_88_102_a6,
author = {Giovanni Coppola},
title = {On the {Selberg} {Integral} of the $k$-divisor {Function} and the $2k$-th {Moment} of the {Riemann} {Zeta-function}},
journal = {Publications de l'Institut Math\'ematique},
pages = {99 },
publisher = {mathdoc},
volume = {_N_S_88},
number = {102},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a6/}
}
TY - JOUR AU - Giovanni Coppola TI - On the Selberg Integral of the $k$-divisor Function and the $2k$-th Moment of the Riemann Zeta-function JO - Publications de l'Institut Mathématique PY - 2010 SP - 99 VL - _N_S_88 IS - 102 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a6/ LA - en ID - PIM_2010_N_S_88_102_a6 ER -
%0 Journal Article %A Giovanni Coppola %T On the Selberg Integral of the $k$-divisor Function and the $2k$-th Moment of the Riemann Zeta-function %J Publications de l'Institut Mathématique %D 2010 %P 99 %V _N_S_88 %N 102 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a6/ %G en %F PIM_2010_N_S_88_102_a6
Giovanni Coppola. On the Selberg Integral of the $k$-divisor Function and the $2k$-th Moment of the Riemann Zeta-function. Publications de l'Institut Mathématique, _N_S_88 (2010) no. 102, p. 99 . http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a6/