Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
@article{PIM_2010_N_S_88_102_a6, author = {Giovanni Coppola}, title = {On the {Selberg} {Integral} of the $k$-divisor {Function} and the $2k$-th {Moment} of the {Riemann} {Zeta-function}}, journal = {Publications de l'Institut Math\'ematique}, pages = {99 }, publisher = {mathdoc}, volume = {_N_S_88}, number = {102}, year = {2010}, language = {en}, url = {http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a6/} }
TY - JOUR AU - Giovanni Coppola TI - On the Selberg Integral of the $k$-divisor Function and the $2k$-th Moment of the Riemann Zeta-function JO - Publications de l'Institut Mathématique PY - 2010 SP - 99 VL - _N_S_88 IS - 102 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a6/ LA - en ID - PIM_2010_N_S_88_102_a6 ER -
%0 Journal Article %A Giovanni Coppola %T On the Selberg Integral of the $k$-divisor Function and the $2k$-th Moment of the Riemann Zeta-function %J Publications de l'Institut Mathématique %D 2010 %P 99 %V _N_S_88 %N 102 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a6/ %G en %F PIM_2010_N_S_88_102_a6
Giovanni Coppola. On the Selberg Integral of the $k$-divisor Function and the $2k$-th Moment of the Riemann Zeta-function. Publications de l'Institut Mathématique, _N_S_88 (2010) no. 102, p. 99 . http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a6/