Characterization of the Pseudo-symmetries of Ideal Wintgen Submanifolds of Dimension 3
Publications de l'Institut Mathématique, _N_S_88 (2010) no. 102, p. 53 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Recently, Choi and Lu proved that the Wintgen inequality $\rho\leq H^2-\rho^\bot+k$, (where $\rho$ is the normalized scalar curvature and $H^2$, respectively $\rho^\bot$, are the squared mean curvature and the normalized scalar normal curvature) holds on any $3$-dimensional submanifold $M^3$ with arbitrary codimension $m$ in any real space form $\widetilde M^{3+m}(k)$ of curvature $k$. For a given Riemannian manifold $M^3$, this inequality can be interpreted as follows: for all possible isometric immersions of $M^3$ in space forms $\widetilde M^{3+m}(k)$, the value of the intrinsic curvature $\rho$ of $M$ puts a lower bound to all possible values of the extrinsic curvature $H^2-\rho^\bot+k$ that $M$ in any case can not avoid to ``undergo" as a submanifold of $\tilde M$. From this point of view, $M$ is called a Wintgen ideal submanifold of $\widetilde M$ when this extrinsic curvature $H^2-\rho^\bot+k$ actually assumes its theoretically smallest possible value, as given by its intrinsic curvature $\rho$, at all points of $M$. We show that the pseudo-symmetry or, equivalently, the property to be quasi-Einstein of such $3$-dimensional Wintgen ideal submanifolds $M^3$ of $\widetilde M^{3+m}(k)$ can be characterized in terms of the intrinsic minimal values of the Ricci curvatures and of the Riemannian sectional curvatures of $M$ and of the extrinsic notions of the umbilicity, the minimality and the pseudo-umbilicity of $M$ in $\widetilde M$.
Classification : 53B25 53B35 53A10 53C42
Keywords: submanifold, Wintgen inequality, pseudo-symmetric manifold, quasi-Einstein space
@article{PIM_2010_N_S_88_102_a2,
     author = {Ryszard Deszcz and Miroslava Petrovi\'c-Torga\v{s}ev and Zerrin \c{S}ent\"urk and Leopold Verstraelen},
     title = {Characterization of the {Pseudo-symmetries} of {Ideal} {Wintgen} {Submanifolds} of {Dimension} 3},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {53 },
     publisher = {mathdoc},
     volume = {_N_S_88},
     number = {102},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a2/}
}
TY  - JOUR
AU  - Ryszard Deszcz
AU  - Miroslava Petrović-Torgašev
AU  - Zerrin Şentürk
AU  - Leopold Verstraelen
TI  - Characterization of the Pseudo-symmetries of Ideal Wintgen Submanifolds of Dimension 3
JO  - Publications de l'Institut Mathématique
PY  - 2010
SP  - 53 
VL  - _N_S_88
IS  - 102
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a2/
LA  - en
ID  - PIM_2010_N_S_88_102_a2
ER  - 
%0 Journal Article
%A Ryszard Deszcz
%A Miroslava Petrović-Torgašev
%A Zerrin Şentürk
%A Leopold Verstraelen
%T Characterization of the Pseudo-symmetries of Ideal Wintgen Submanifolds of Dimension 3
%J Publications de l'Institut Mathématique
%D 2010
%P 53 
%V _N_S_88
%N 102
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a2/
%G en
%F PIM_2010_N_S_88_102_a2
Ryszard Deszcz; Miroslava Petrović-Torgašev; Zerrin Şentürk; Leopold Verstraelen. Characterization of the Pseudo-symmetries of Ideal Wintgen Submanifolds of Dimension 3. Publications de l'Institut Mathématique, _N_S_88 (2010) no. 102, p. 53 . http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a2/