Characterization of the Pseudo-symmetries of Ideal Wintgen Submanifolds of Dimension 3
Publications de l'Institut Mathématique, _N_S_88 (2010) no. 102, p. 53
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Recently, Choi and Lu proved that the Wintgen inequality $\rho\leq H^2-\rho^\bot+k$, (where $\rho$ is the normalized scalar curvature and $H^2$, respectively $\rho^\bot$, are the squared mean curvature and the normalized scalar normal curvature) holds on any $3$-dimensional submanifold $M^3$ with arbitrary codimension $m$ in any real space form $\widetilde M^{3+m}(k)$ of curvature $k$. For a given Riemannian manifold $M^3$, this inequality can be interpreted as follows: for all possible isometric immersions of $M^3$ in space forms $\widetilde M^{3+m}(k)$, the value of the intrinsic curvature $\rho$ of $M$ puts a lower bound to all possible values of the extrinsic curvature $H^2-\rho^\bot+k$ that $M$ in any case can not avoid to ``undergo" as a submanifold of $\tilde M$. From this point of view, $M$ is called a Wintgen ideal submanifold of $\widetilde M$ when this extrinsic curvature $H^2-\rho^\bot+k$ actually assumes its theoretically smallest possible value, as given by its intrinsic curvature $\rho$, at all points of $M$. We show that the pseudo-symmetry or, equivalently, the property to be quasi-Einstein of such $3$-dimensional Wintgen ideal submanifolds $M^3$ of $\widetilde M^{3+m}(k)$ can be characterized in terms of the intrinsic minimal values of the Ricci curvatures and of the Riemannian sectional curvatures of $M$ and of the extrinsic notions of the umbilicity, the minimality and the pseudo-umbilicity of $M$ in $\widetilde M$.
Classification :
53B25 53B35 53A10 53C42
Keywords: submanifold, Wintgen inequality, pseudo-symmetric manifold, quasi-Einstein space
Keywords: submanifold, Wintgen inequality, pseudo-symmetric manifold, quasi-Einstein space
@article{PIM_2010_N_S_88_102_a2,
author = {Ryszard Deszcz and Miroslava Petrovi\'c-Torga\v{s}ev and Zerrin \c{S}ent\"urk and Leopold Verstraelen},
title = {Characterization of the {Pseudo-symmetries} of {Ideal} {Wintgen} {Submanifolds} of {Dimension} 3},
journal = {Publications de l'Institut Math\'ematique},
pages = {53 },
publisher = {mathdoc},
volume = {_N_S_88},
number = {102},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a2/}
}
TY - JOUR AU - Ryszard Deszcz AU - Miroslava Petrović-Torgašev AU - Zerrin Şentürk AU - Leopold Verstraelen TI - Characterization of the Pseudo-symmetries of Ideal Wintgen Submanifolds of Dimension 3 JO - Publications de l'Institut Mathématique PY - 2010 SP - 53 VL - _N_S_88 IS - 102 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a2/ LA - en ID - PIM_2010_N_S_88_102_a2 ER -
%0 Journal Article %A Ryszard Deszcz %A Miroslava Petrović-Torgašev %A Zerrin Şentürk %A Leopold Verstraelen %T Characterization of the Pseudo-symmetries of Ideal Wintgen Submanifolds of Dimension 3 %J Publications de l'Institut Mathématique %D 2010 %P 53 %V _N_S_88 %N 102 %I mathdoc %U http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a2/ %G en %F PIM_2010_N_S_88_102_a2
Ryszard Deszcz; Miroslava Petrović-Torgašev; Zerrin Şentürk; Leopold Verstraelen. Characterization of the Pseudo-symmetries of Ideal Wintgen Submanifolds of Dimension 3. Publications de l'Institut Mathématique, _N_S_88 (2010) no. 102, p. 53 . http://geodesic.mathdoc.fr/item/PIM_2010_N_S_88_102_a2/