A Counterexample on Nontangential Convergence for Oscillatory Integrals
Publications de l'Institut Mathématique, _N_S_87 (2010) no. 101, p. 129
Cet article a éte moissonné depuis la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Consider the solution of the time-dependent Schrödinger equation with initial data $f$.
It is shown by Sjögren and Sjölin (1989) that there exists $f$ in the Sobolev space $H^s(\mathbf R^n)$, $s=n/2$
such that tangential convergence can not be widened to convergence regions.
In this paper we show that the corresponding result holds
when $-\Delta_x$ is replaced by an operator $\varphi(D)$, with special conditions on $\varphi$.
Classification :
42B15 35B65 35J10
Keywords: Generalized time-dependent Schrödinger equation, nontangential convergence
Keywords: Generalized time-dependent Schrödinger equation, nontangential convergence
@article{PIM_2010_N_S_87_101_a9,
author = {Karoline Johansson},
title = {A {Counterexample} on {Nontangential} {Convergence} for {Oscillatory} {Integrals}},
journal = {Publications de l'Institut Math\'ematique},
pages = {129 },
year = {2010},
volume = {_N_S_87},
number = {101},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2010_N_S_87_101_a9/}
}
Karoline Johansson. A Counterexample on Nontangential Convergence for Oscillatory Integrals. Publications de l'Institut Mathématique, _N_S_87 (2010) no. 101, p. 129 . http://geodesic.mathdoc.fr/item/PIM_2010_N_S_87_101_a9/