A Counterexample on Nontangential Convergence for Oscillatory Integrals
Publications de l'Institut Mathématique, _N_S_87 (2010) no. 101, p. 129 .

Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts

Consider the solution of the time-dependent Schrödinger equation with initial data $f$. It is shown by Sjögren and Sjölin (1989) that there exists $f$ in the Sobolev space $H^s(\mathbf R^n)$, $s=n/2$ such that tangential convergence can not be widened to convergence regions. In this paper we show that the corresponding result holds when $-\Delta_x$ is replaced by an operator $\varphi(D)$, with special conditions on $\varphi$.
Classification : 42B15 35B65 35J10
Keywords: Generalized time-dependent Schrödinger equation, nontangential convergence
@article{PIM_2010_N_S_87_101_a9,
     author = {Karoline Johansson},
     title = {A {Counterexample} on {Nontangential} {Convergence} for {Oscillatory} {Integrals}},
     journal = {Publications de l'Institut Math\'ematique},
     pages = {129 },
     publisher = {mathdoc},
     volume = {_N_S_87},
     number = {101},
     year = {2010},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/PIM_2010_N_S_87_101_a9/}
}
TY  - JOUR
AU  - Karoline Johansson
TI  - A Counterexample on Nontangential Convergence for Oscillatory Integrals
JO  - Publications de l'Institut Mathématique
PY  - 2010
SP  - 129 
VL  - _N_S_87
IS  - 101
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PIM_2010_N_S_87_101_a9/
LA  - en
ID  - PIM_2010_N_S_87_101_a9
ER  - 
%0 Journal Article
%A Karoline Johansson
%T A Counterexample on Nontangential Convergence for Oscillatory Integrals
%J Publications de l'Institut Mathématique
%D 2010
%P 129 
%V _N_S_87
%N 101
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PIM_2010_N_S_87_101_a9/
%G en
%F PIM_2010_N_S_87_101_a9
Karoline Johansson. A Counterexample on Nontangential Convergence for Oscillatory Integrals. Publications de l'Institut Mathématique, _N_S_87 (2010) no. 101, p. 129 . http://geodesic.mathdoc.fr/item/PIM_2010_N_S_87_101_a9/