A Counterexample on Nontangential Convergence for Oscillatory Integrals
Publications de l'Institut Mathématique, _N_S_87 (2010) no. 101, p. 129
Voir la notice de l'article provenant de la source eLibrary of Mathematical Institute of the Serbian Academy of Sciences and Arts
Consider the solution of the time-dependent Schrödinger equation with initial data $f$.
It is shown by Sjögren and Sjölin (1989) that there exists $f$ in the Sobolev space $H^s(\mathbf R^n)$, $s=n/2$
such that tangential convergence can not be widened to convergence regions.
In this paper we show that the corresponding result holds
when $-\Delta_x$ is replaced by an operator $\varphi(D)$, with special conditions on $\varphi$.
Classification :
42B15 35B65 35J10
Keywords: Generalized time-dependent Schrödinger equation, nontangential convergence
Keywords: Generalized time-dependent Schrödinger equation, nontangential convergence
@article{PIM_2010_N_S_87_101_a9,
author = {Karoline Johansson},
title = {A {Counterexample} on {Nontangential} {Convergence} for {Oscillatory} {Integrals}},
journal = {Publications de l'Institut Math\'ematique},
pages = {129 },
publisher = {mathdoc},
volume = {_N_S_87},
number = {101},
year = {2010},
language = {en},
url = {http://geodesic.mathdoc.fr/item/PIM_2010_N_S_87_101_a9/}
}
TY - JOUR AU - Karoline Johansson TI - A Counterexample on Nontangential Convergence for Oscillatory Integrals JO - Publications de l'Institut Mathématique PY - 2010 SP - 129 VL - _N_S_87 IS - 101 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PIM_2010_N_S_87_101_a9/ LA - en ID - PIM_2010_N_S_87_101_a9 ER -
Karoline Johansson. A Counterexample on Nontangential Convergence for Oscillatory Integrals. Publications de l'Institut Mathématique, _N_S_87 (2010) no. 101, p. 129 . http://geodesic.mathdoc.fr/item/PIM_2010_N_S_87_101_a9/